
Collaboratively Building Reusable 
Job Configurations for HPC 
Jeremy Cohen  
London e-Science Centre, Department of Computing, Imperial College London 
jeremy.cohen@imperial.ac.uk 

 
With thanks to: 
John Darlington, Chris Cantwell, David Moxey, Spencer Sherwin & Jeremy Nowell 
 
 
PRISM Seminar, Thursday 26th March 2015 



Reusable Job Configurations 

•  Provide a high-level approach for end-users to 
configure their jobs 

•  Address complexity of configuration files that 
stems from complex software methods and 
heterogeneous hardware 

•  Improve usability of software methods and their 
availability to scientists/researchers not from a 
computationally focused background 



Integrated e-Infrastructure 

End-users

Method
Developers

Computer
Scientists

e-Infrastructure Operators

Hardware Platforms
& Providers 



A Decoupled e-Infrastructure 

End-users

Method
Developers

Computer
Scientists

E-Infrastructure

Hardware Platforms
& Providers 

e-Infrastructure Operators



Abstraction versus Efficiency 
A Fundamental and Long-standing Problem 

Simplicity and Ease of Use 

Efficiency 

Complexity ? Abstraction 

Slide: J. Darlington, Imperial College London 



Abstractions 

•  Allows automated selection of optimal implementations 

•  Metadata plays a key role in enabling abstract => 
concrete mapping – maintains information 

Coordination Forms = Control Abstraction 
Higher-order, functions as arguments 

Abstract Components  
=  

Data Processing Abstractions 
First-order, data as arguments 



Coordination Forms 

•  A functional/mathematical approach to job 
specification 

•  Referentially transparent, Church-Rosser property 

•  Based on work by Darlington, et al. 

•  Can have multiple implementations – e.g. sequential/
parallel  

•  Compositions of coordination forms can be used to 
describe application flow 

J. Darlington, Y. Guo, H. W. To and J. Yang. Functional skeletons for parallel 
coordination. In proceedings of EURO-PAR ’95 Parallel Processing, LNCS 
966/1995, p. 55-66, 1995. Springer Berlin/Heidelberg 



Alternative implementations: Coordination Forms 

Co-ordination Form: PAR

A co-ordination form that specifies the 
execution of one or more independent 
components/tasks.

Inputs: 
      I1) A list of the tasks to be executed
      I2) A list containing the inputs for each 
          of the tasks in (I1).
Outputs:
      O1) A list containing the outputs for 
             each of the tasks from (I1) 

PAR Implementation

Parallel

Undertakes all of the tasks 
listed concurrently, 
spawning a new process 
for each task.

PAR Implementation

Sequential

Undertakes each of the 
tasks listed in turn.

PAR Implementation

Cloud

Undertakes each of the 
tasks listed concurrently, 
provisioning a dedicated 
cloud server for each task.



Software Components 

•  Granularity varies 

•  Fine-grained: small libraries, individual functions, 

command-line tools 

•  Coarse-grained: Whole application! 

•  Abstract – metadata wrapper, no implementation 

•  Concrete – Runnable component, metadata +  

   implementation 

•  Components can have multiple implementations 



Alternative implementations: Components 

Linear
Solver

Matrix

Vector
Vector

QR LU Cholesky

QR
Sequential i686

QR
Parallel MPI 

x86_64
QR

Parallel Cloud

LU
Parallel OpenMP

x86_64

LU
Parallel MPI

SPARC

Cholesky
Sequential 

x86_64

Cholesky
Parallel MPI 

x86_64

QR
Parallel 

OpenMP - x86_64



Libhpc Projects 

•  Libhpc 2 runs to end October 2015 

•  Builds on Libhpc 1 which ran from July 11 -> Jun 13 

•  Developing framework model and a range of 

associated tools, services and demonstrators 

•  Imperial College London 
•  Dept of Computing (LeSC/SCG) 

•  Dept of Aeronautics 

•  CISBIO / Bioinformatics Support 

Service 

•  Epidemiology, School of Public Health 

•  University of Edinburgh 
•  Edinburgh Parallel  

    Computing Centre  

    (EPCC) 



Libhpc Architecture 

User Interface CF Repository

FARM

PIPE

PAR

Hardware Metadata 
Repository

Hardware Metadata

Libhpc Mapper

Libhpc Deployment Services

Batch 
Cluster

(e.g. PBS-based)
Public Cloud

(e.g. Amazon EC2)
Private Cloud 

(e.g. OpenStack)
Standalone 

Local Resources

Software Component & 
Metadata Repository

Component + 
Metadata

User

Component + 
Metadata

Co-ordination 
Forms + Metadata



Templates and Profiles 



Templates & Profiles 

•  Libhpc software parameter templates 

•  Represent an application’s possible configuration 
parameters/decisions 

•  Tree structure with semantic parameter grouping 

•  Defined using XML Schema 

•  Does not contain values for any of the specified 
parameters 

•  Includes validation and documentation metadata 



Templates & Profiles 



Templates & Profiles 

•  Libhpc profiles 

•  Provides an instantiation of a template’s parameters 

•  XML document – profile structure can be validated 
against template 

•  May be: 

•  Partial: contains a subset of the required values from 

template 

•  Complete: Contains a full set of required values and 
can be used to run a job 



Templates & Profiles 



Templates & Profiles 

•  Templates defined and built by developers / domain 
experts 

•  Partial profiles may be saved; extended by different 
entities 

•  End-users may be provided with an almost complete 
profile and then finalise this to run their job(s) 

•  Helps to decouple interactions required for configuration of 

complex applications for heterogeneous resources 



Examples and Demos 



Bioinformatics: Genome Read Pre-Processing/Mapping 
Reference 
Genome

FASTA file

Short Read 
Set (Paired)

Single FASTQ 
file

FASTQ splitbwa index

bwa aln bwa aln

SR_1 SR_2

bwa sampe - generate alignment (paired ended)

samtools import

FA
ST

A 
file

 +
 in

de
x 

file

SAM  file

BAM  file

samtools sort

sorted   BAM file

samtools index

OUTPUT

Input files –  
 Reference Genome – FASTA file 
 Reads from sequencing machine - FASTQ 

 ((sr1,sr2), u) = PAR([fastq_split, bwa_index], 
 [(short_read_file, None, None),(ref_genome_file,)]) 

(v, w) = PAR([bwa_aln, bwa_aln],  
 [(ref_genome_file, sr1, None),  
 (ref_genome_file, sr2, None)]) 

result = PIPE([samtools_index, samtools_sort,  
          (samtools_import, ref_genome_file),  
           bwa_sampe],  

  [ref_genome_file, [v,w], [sr1, sr2], None]) 



Nekkloud: Simplifying Access to Nektar++ 

For more info see:      J. Cohen, D. Moxey, C. Cantwell, et al., "Nekkloud: A software environment 
for high-order finite element analysis on clusters and clouds," IEEE Cluster 2013, Sep 2013, 
Indianapolis, IN, USA. DOI: 10.1109/CLUSTER.2013.6702616 



Molecular Dynamics: GROMACS 
•  GROMACS is a high performance molecular 

dynamics package providing a range of MD 
algorithms – http://www.gromacs.org 

•  Ideal example of an application that includes both 
tightly coupled parallel processes but also a higher-
level pipeline of tools 



Nekkloud Demo 



Acknowledgements:	  

•  Nektar++	  team	  –	  http://www.nektar.info/wiki/Latest/Team	  –	  including	  Chris	  
Cantwell,	  David	  Moxey	  and	  Spencer	  Sherwin	  

•  London	  e-‐Science	  Centre	  –	  John	  Darlington,	  Peter	  Austing	  
•  EPCC	  –	  Jeremy	  Nowell,	  Xu	  Guo;	  
•  Bioinformatics	  Support	  Service,	  Imperial	  College	  London	  –	  Sarah	  Butcher,	  
James	  Abbott	  and	  Filippo	  Mortari	  

•  Additional	  thanks	  to	  members	  of	  the	  above	  groups	  who	  have	  provided	  content	  
for	  this	  presentation	  

	  

Thanks & Acknowledgements 

Thank You 
 

Questions? 


