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Current & Next Generation Intel® Xeon and Xeon Phi™ Platforms

Xeon*
Latest released — Broadwell (14nm process)

* Intel’s Foundation of HPC Performance
« Up to 22 cores, Hyperthreading
« ~66 GB/s stream memory BW (4 ch. DDR4 2400)

* AVX2 — 256-bit (4 DP, 8 SP flops) -> 0.7 TFLOPS

( intel insige"

P ﬂ’lﬁ
Xeon'

Xeon Phi*
Knights Landing (Future generation, 14nm process),

« Optimized for highly parallelized compute intensive workloads

« Common programming model & S/W tools with Xeon

processors, enabling efficient app readiness and performance
tuning

* 60+ cores, 400+ GB/s stream BW, on-die 2D mesh
» AVX512- 512-bit (8 DP, 16 SP flops) -> >3 TFLOPS

* https://software.intel.com/en-us/articles/what-disclosures-has-
intel-made-about-knights-landing

- e

*Intel Xeon and Intel Xeon Phi are trademarks of Intel Coioration in the US and/or other countries.




Modern HPC....

1 1

k
1 — Serial ) 1 — Scalar
. frac frac
<S erialprqc + NumcCores Scalaryrac + VectorLength

Speedup =

Goal: Reduce Serial Fraction and Reduce Scalar Fraction of Code

Ideal Speedup: NumCores*VectorLength (requires zero scalar, zero serial work)

Peak “Compute” Gflops/s

Bandwidth Bound Performance

Most kernels of (CFD) codes are memory BW
bound i.e. not enough compute intensity (flops/byte)
But: modern chips are unbalanced (high flops/

low byte/s)

Attainable Gflops/s

Can we make better “use” of
data after WE have moved - Compute intensity (flops/byte)

It into the chip?




HPC is hard -> Our Approach at PCL




SeisSol

High Order Earthquake Simulations

http://www.seissol.org

Joint Work with Michael Bader (TUM), Alexander Breuer (TUM, SDSC)

This slide deck is based on the ISC’15 paper with an ISC’16 preview




Motivation

“Development of more realistic implementations of dynamic or kinematic
representations of fault rupture, including simulation of higher frequencies (up to

10+ Hz).”
Research Topics in GMP, 2014 Science Collaboration Plan, Southern California Earthquake
Center (SCEC).
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Seismic Wave Propagation & Dynamic Rupture Simulation

Initial Shear Traction 7y ; A
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(Brietzke et al. (2009))
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Fault Split, etc.

* Full elastic wave equations in 3D and » Unstructured tetrahedral meshes
complex heterogeneous media * Highly Optimized Compute Kernels

« Dynamic Rupture without artificial oscillations  + Massively parallel

» High order: ADER(time)-DG(space)

@ed | o




The M7.2 Landers 1992 Earthquake
Simulation — Gordon Bell Finalist 14

« 191,098,540 tetrahedrons (~1300
per core of SuperMUC, ~130 per
thread of Xeon Phi on Stampede)

* Production run SuperMUC:

» 234,567 time steps equaling 42s
simulated time

» Output: 23 pick-points + high-res
fault

e 7h15m @ 147,456 SNB-EP cores

 1.25 PFLOPs incl. setup and
output!! (96.7% of scaling without
setup and output), SuperMUC

« 2 PFLOPS on Stampede

* Frequencies up to 10Hz



vlc-record-2014-08-25-21h40m33s-seissol_isc_hd.mp4-.mp4

Discontinuous Galerkin in a Small Nutshell

Most-flexible method

seen as a mixed/hybrid method
* FEM: polynomial (high-order) approximation within the element

 FVM: inter-element convection: up winded numerical fluxes

pretty new: first serious codes in the 2000s, first ever paper on Navier-Stokes
with DG (CFD) in 1997.

Very compact element-centric formulation

Inter-element communication just across adjacent faces
* h- and p-refinement simple
« Unstructured meshes automatically supported

« Local-Time-Stepping relatively simple

high-order can lead to GEMM-like/demanding routines (e.g. SeisSol modal
basis and Tets)
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Deriving SeisSol's Compute Kernels
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SeisSol’'s Compute Kernels — Time Kernel

" Recursive Scheme )
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Typical Matrix sizes of production runs
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SeisSol’'s Compute Kernels — Local Integration

NV O = QR+ V(T) ZFM%)
Sparse/Dense Matrix-Matrix multiplications

Typical Matrix sizes of production runs (convergence order 6): 9x9,56x9, 56x35

A priori known sparsity patterns
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SeisSol’s Compute Kernels — Boundary Kernel
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Unstructured Access to:
e Flux matrices
« Time integrated DOFs of neighboring elements




SeisSol Key Compute Kernels

 Local Integration (partly L1-cache BW bound, linear memory accesses)
«  Consist of time integration, volume integration and local part of boundary integration

* 9 element local matrices ( 3 sparse 24NNZ, 4 9x9, 2 56x9) and 10 global matrices (3 40x56, 3
35x56, 4 56x56) (all number for sixth order)

 Flop/byte approx. 15 (sixth order)

« Neighbor Integration (in theory compute bound, irregular memory accesses and
higher bandwidth)

« 10 element local matrices (4 9x9, 6 56x9) and 4 out of 48 global matrices (4 56x56)

 Flop/byte approx. 7.5 (sixth order)

« Sparse and Dense Matrix Multiplication of small sizes:

*  Due to unstructured meshes we need a prefetching stream that matches the mesh structure
(not a regular DGEMM prefetching strategy)

»  Global (irregularly accessed) operators occupy close to 1.5 MB
»  Code generator which hard-wires sparsity patterns

- Intel MKL cannot by used, due to blocking and padding overheads. Using MKL instead
of our highly tuned kernels results into 1.5-3X speed-down depending on order.

- Due to switch between dense and sparse implementations: highest efficiency doesn’t
correspond to shortest time to solution

()




Systems used in our Performance Comparison

WSM A dual-socket Intel® Xeon® X5690 server, 12 cores @3.46 GHz, 48 GB of
DDR3-1333 memory, 128-bit SSE4.2 vector instruction set, 41 GiB/s mem-
ory bandwidth, 166 GFLOPS double precision peak performance, idle power

consumption of 160 W and DGEMM power consumption of 350 W.
SNB A dual-socket Intel® Xeon® E5-2670 server, 16 cores @2.6 GHz, 128 GB

of DDR3-1600 memory, 256-bit AVX vector instruction set, 75 GiB /s mem-
ory bandwidth, 333 GFLOPS double precision peak performance, idle power
consumption of 100 W and DGEMM power consumption of 280 W.

HSW A dual-socket Intel® Xeon® E5-2699 v3 server, 36 cores @1.9 GHz (guar-
anteed, PO-frequency is 2.3 GHz), 128 GB of DDR4-1866 memory, 256-bit
AVX2 vector instruction set, 105 GiB/s (cluster-on-die enabled) memory
bandwidth, 1.1 TFLOPS double precision peak performance ©@1.9 GHz, idle

power consumption of E;-{’W and DGEMM power consumption of 400 W.
KNC A Intel® Xeon Phi  5110P coprocessor, 60 cores @1.06 GHz, 8 GB of

GDDR5 memory, 512-bit MIC vector instruction set, 150 GiB/s memory

bandwidth and 1 TFLOPS double precision peak performance, idle power
consumption of 100 W and DGEMM power consumption of 225 W,

Powermeters:

- Watts-Up?: HSW and WSM

- Megware® Clustsafe®: SNB

- micsmc: (software, co-processor only): KNC




Optimized Matrix Kernels — LIBXSMM

« Highly optimized sparse and dense matrix kernels by offline code generation
and auto-tuning (publically available):

* Intel SSE3, AVX, AVX2, KNC, AVX512F

WSM mSNB mHSW WSM = SNB mHSW
30 S S S S S S 1.00
25 - 4 - D'E‘Sfﬁ
® 20 - - / - 0.67 &
g 15 - - - - 0.50 2
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5 L 017 8
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CGHUEI‘QEHEE order CGI'I\"EI‘QEFIEE order

Fig. 1. Double precision GEMM kernel performance for O2 to O7 on WSM, SNB and
HSW. DGEMM performance for Bo x 9 x Bp shapes (left) and Be x 9 x 9 cases (right)

is shown. GFLOPS are depicted as bars whereas fraction of peak performance is given
by lines. DGEMMSs were executed for 10,000 times on a hot L1 cache.
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Regular Convergence Test

* Regular cubic mesh

with 5 tets per cube rY ég:?%ﬁ

- Error-Norms: Wave I gl:;;; ggg%}a
propagationn | (S5
dlagon_al dlrectlor_1 with || 1| " }}E@Eggggﬁgg
periodic boundaries Lo gﬁgggggggggg

+ Hardware: HSW @ 1.9 =Nl 2= SN

o gOanvergence MeSh Dumbser, Kaser: An arbitrary high-order discontinuous Galerkin

method for elastic waves on unstructured meshes = |l. The three-

. dimensional isotropic case
width g




What are the benefits from using a higher-order
method?
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Fig. 2. Convergence of the synthetic benchmark for orders @2 — 7. Shown is the mesh
width 100/Nip against the error in the L®-norm for the variable oy.. Orange dashed
lines represent single precision, blue solid lines double precision. The slopes of the gray
triangles next to the respective curves illustrate the mathematical convergence rate.




What does this mean for the energy consumption?

shsw2 -==#t---= shew3 ---#---- shsw4 ---#---- dhswh =——w— dhsw? —t—
dhsw? —»— dhsw3 —&— dhsw4 —e— dhswf —&—

1E-02

1E-03
1E-04
1E-05
1E-06

error

1E-07
1E-08
1E-09
1E-10

energy (kJ)

500 750 1000

Fig. 3. L™ -error of variable ¢¥F in dependency of the consumed energy for the HSW
machine in single- and double-precision.

Benchmark @1.2 GHz Q1.9 GHz
Performace | Power|| Performace | Power

STREAM - Triad 105GiB/s| 295W 105 GiB/s| 345W

DGEMM - 60kx60kx192 || 610 GFLOPS| 250W|{950 GFLOPS| 400W

HSW: Dual —socket Xeon E5-2699v3, @1.9 GHz
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What reduction in error Is possible in a given
energy-budget?
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Fig. 4. Error with respect to a 150 kJ energy-budget for all matching settings. Shown
is the interpolated L®-error of variable ¢¥* for the different architectures, orders of
convergence and single- and double-precision.
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The LOH.1 Benchmark

« computational domain extending
[-15km, 15km]*2 X [Okm, 17km]

» free-surface boundary conditions
on the surface and outflow
boundary conditions everywhere
else. 386,518 elements and is
unstructured

* the seismic source is located at
(0,0,-2000). Shown is a only a
part of size [-2km, 15km]*2 X

[0,17 km]
Fig. 5. Setup of the LOH.1 scenario.
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Fig. 6. Comparison of the vertical particle velocity w at receiver nine. Shown is the
reference solution of the SISMOWINE project against Seissol using O2 and OT.




GFLOPS for LOH.1
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—> Switching to newer and denser platforms, the memory bound
to compute bound ratios increase in higher convergence orders.




MFLOPS/W for LOH.1
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—> In case of lower order runs, the lowest frequency results in the best
energy to performance ratio (recall micro benchmark results!)




Power Consumption in dependence on the VEX on
Haswell

700
525

350

GFLOPS
MFLOPS /W

175
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234567 234567 34567 234567 234567
SSE3 AVX AVX2 SSE3 AVX AVX2

Fig. 8. GFLOPS (left) and the MFLOPS per Watt (right) over all convergences orders
and instructions set on HSW @1.9 GHz.

« Shorter vectors result in less performance and less power - good for old code
* FMA significantly increases power efficiency

- whenever we can, we should use long vectors and FMA




What are Architectural Learnings?

 Low-order energy consumption: memory-bound new architectures minor
impact: 2X Westmere to Haswell.

 High-order energy consumption: >10X Westmere to Haswell. 105 better
than low-order.

« Very good perf./watt, however: up to 50% useless work!

 Westmere -> Haswell: 14 sparse matrices reduced to 2
« Vector Performance vs. L1 bandwidth

« Using gather/scatter or sparsity code gen. turn DGEMMSs in to sparse DGEMMs
which are an L1 bandwidth benchmark: 2 reads, 1 store per cycle

« Max. 50% peak since 2" FPU is empty

 50% is not reachable due to address calc. and jumps -> ~25-30% achieved in
practice

« Lots of opportunities for architectural or algorithmic (UQ) improvements

* For best time-to-solution, we also need tricks such as LTS




Nek5000 / NekBox

High Order CFD Simulations

http://nek5000.mcs.anl.qov/

https://qithub.com/maxhutch/nek

Joint Work with Maxwell Hutchinson (U Chicago), David Keyes (KAUST)

ISC’16 paper preview



http://nek5000.mcs.anl.gov/
http://nek5000.mcs.anl.gov/
http://nek5000.mcs.anl.gov/
https://github.com/maxhutch/nek
https://github.com/maxhutch/nek

Nek Overview

Nek solves the incompressible Navier Stokes equations:

du 1 2
E+uv?u_—5'ﬁ'p+y?u+f Vou=10

Incl. advection-diffusion equations for scalar variables such as temperature or
mass fractions.

Nek use the spectral element method (SEM) which is a two-level discretization:

a) Atensor product construction of Gauss-Lobatto-Legendre (GLL) quadrature
points within each element -> N3 DOFs per element

b) Continuity across elements -> forming a mesh

Operators are written as element local operators:
A=Ay x Iy x L)+ (I x Ay x I,) + (I x I, x A;)

And direct stiffness summation ensure continuity. Furthermore, this reduces the
complexity form O(N”6) to O(N"4).
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NekBox’s main compute routines

A typical NekBox run spends <1% in sparse computations & communications,
~40% in vector-vector or matrix-vector operations, ~60% matrix-matrix
operations.

Helmholtz operator:

Huf(:,:,:) = gxlz,:,:) = matmul (Kx(:,:), reshapeiu, (/N, N=N/)})
do 1 = 1, n

Hu{:,:,1i) += gy({:z,:,1i) = matmaul (u(:,:,1i), EyT(:z,:))
enddo
Hu({:,:,:) += gzi:,:,:) » matmul (reshape(u, (/N=N, N/)), KzT(:,:))
Huf{:,z,:z) = hl  Bul(:,:,:) + hZ = Miz,:,:z) = ulz,:,:)

Basis transformation:
tmp_x = matmul (Ax, u)
do 1 =1, n
tmp_y(:,:,1) = matmul (tmp_x(:,:,1), AyT)
enddo
v = matmul (tmp_vy, AzT)

Gradient calculation:

dudx = matmul (Dx, u)
de 1 =1, n
dudy(:z,:,1) = matmul (u(:,:,1), DyT)
enddo
dudz = matmul (u, DzT)




Helmholtz Operator / Basis Transformation

B Intel MEL - GFLOPS B Nek/mxm - GFLOPS I LIEXSMM - GFLOPS B LIBXSMM (NTS) - GFLOPS
e Intel MKL - GB/s e Wk rmxm - GB/f's e LIBXSMM - GB/s e LIBXSMM [NTS) - GB/s
Q) === = = e e e e e e e e e e e - 120
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Performance of the Helmholtz operator reproducer (up) and Basis Transformation
(bottom) using different implementation for the small matrix multiplications. NTS denotes
the usage of non-temporal stores. Measured on Shaheen (32 cores of HSW-EP, 2.3 GHz)

1




Some Early High Order Efficiency Results

We model the single-mode Rayleigh-Taylor Instability (Boussinesq equations)

1

2™

. 13! o
we g ¥ aE
N g
14, 6% ® . . 13 o * * E 2
- L r - - . E 3
w b =
* * 16" 18, &* .a "% 2
, I 3,4
m, a* e et " :I'é * yi
ml'l:l' '.l;r' L Lo |i:'m| Jl;' 16 ' -
(a) Shaheen (b) Mira (c) Cost vs DOF

Log-base 10 error of bubble height and mix volume:

H = sup {z :minT(z,y, z) < T{}}

x.y

H = flT —T[}|CLTV
on Shaheen.

We can see that high orders are favorable as they better match modern hardware and have
superior convergence speed.
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LIBXSMM

Library for small matrix multiplications on Intel Architecture

https://github.com/hfp/libxsmm

Joint Work with Hans Pabst (Intel), Greg Henry (Intel)




Abstract and Motivation

“Improving Performance for
Small GEMM Size Problems.”

* Problem size is characterized by the M, N, and K parameters
« Common building block for high order methods
 Common building block for blocked Sparse Linear Algebra
« A suitable problem size may fall within (M N K)*(1/3) <= 60
* Intel® Math Kernel Library (Intel® MKL) uses MKL_DIRECT_CALL

 These sizes are smaller than regular SIDGEMM blocked macro-kernels,
therefore MKL_DIRECT _CALL helps, but is only the tip of the iceberg- a lot
more performance is necessary/possible




LIBXSMM

Interface (C/C++ and FORTRAN API)
Simplified interface for matrix-matrix multiplications

* Chxn=Cmxnt anyk*byn (@lso full XxGEMM)

Application

libxsmm Dispatcher

Inllne_d intel MKL Assembly
Compiler Generator

License

* Open Source Software (BSD 3-clause license)*

* https://github.com/hfp/libxsmm




LIBXSMM Implementation

Three Critical Parts of Technology:
« Highly efficient Frontend (Hans Pabst)
* BLAS compatible (DGEMM, SGEMM) (even LD _PRELOAD)
» Support for F77, C89, F2003, C++
« 2-level code caching
« Zero-overhead calls into assembly
« Code Generator (Alex Heinecke)
» Supports all Intel Architectures since 2005, special focus on AVX-512
* Prefetching across small GEMMs
« Can generate *.s, inline assembly into *.h/*.c of the feed the JIT encoder
« JIT (Just-In-Time) Encoder (Greg Henry)

 Encodes an instruction based on basic blocks

» Very fast as no compilation is involved




JIT overhead (incl. OS overheads)

==Xeon E5-2697v4 - JIT compile time in microseconds
- --Xeon E5-2697v4 - JIT compile time in MKL calls
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LIBXSMM Performance on 1c Xeon E5-2697v4 (BDX)

mm | IBXSMM, static

Intel MKL 11.3.2, direct-call
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Conclusion and Future/Current
Work




Conclusions

« High order simulations can leverage both memory bandwidth and compute
« Due to faster convergence, they are more energy efficient

* Problem solved?

* No!

* We need a better understanding where these techniques are applicable and
where possible traps are.

* We still need optimal hardware, SeisSol & Nek!

Therefore:

* We started a collaboration with U Chicago/ ANL on Nek5000 -> first results
have been submitted to ISC’16 and SC’'16

* And of course we are looking for more®©




experience
what'’s inside”



