
Alexander Heinecke

Parallel Computing Lab, Intel Labs, USA

2016-04-18

Imperial College London, United Kingdom

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL

OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL

ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,

RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A

PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER

INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel

microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer

systems, components, software, operations and functions. Any change to any of those factors may cause the results to

vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated

purchases, including the performance of that product when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel

logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are

not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other

optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on

microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for

use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel

microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.

Notice revision #20110804

2

• Challenges and Settings in current HPC and Intel’s

Parallel Computing Lab

• High Order Earthquake Simulation – SeisSol

• High Order CFD – NekBox/Nek5000

• LIBXSMM

• Conclusion

3

Outline

4

Current & Next Generation Intel® Xeon and Xeon Phi™ Platforms

Xeon*

Latest released – Broadwell (14nm process)

• Intel’s Foundation of HPC Performance

• Up to 22 cores, Hyperthreading

• ~66 GB/s stream memory BW (4 ch. DDR4 2400)

• AVX2 – 256-bit (4 DP, 8 SP flops) -> 0.7 TFLOPS

Xeon Phi*

Knights Landing (Future generation, 14nm process),

• Optimized for highly parallelized compute intensive workloads

• Common programming model & S/W tools with Xeon
processors, enabling efficient app readiness and performance
tuning

• 60+ cores, 400+ GB/s stream BW, on-die 2D mesh

• AVX512– 512-bit (8 DP, 16 SP flops) -> >3 TFLOPS

• https://software.intel.com/en-us/articles/what-disclosures-has-
intel-made-about-knights-landing

*Intel Xeon and Intel Xeon Phi are trademarks of Intel Coporation in the US and/or other countries.

5

Modern HPC….

𝑺𝒑𝒆𝒆𝒅𝒖𝒑 =
1

𝑆𝑒𝑟𝑖𝑎𝑙𝑓𝑟𝑎𝑐 +
1 − 𝑆𝑒𝑟𝑖𝑎𝑙𝑓𝑟𝑎𝑐
𝑵𝒖𝒎𝑪𝒐𝒓𝒆𝒔

∗
1

𝑆𝑐𝑎𝑙𝑎𝑟𝑓𝑟𝑎𝑐 +
1 − 𝑆𝑐𝑎𝑙𝑎𝑟𝑓𝑟𝑎𝑐
𝑽𝒆𝒄𝒕𝒐𝒓𝑳𝒆𝒏𝒈𝒕𝒉

Goal: Reduce Serial Fraction and Reduce Scalar Fraction of Code

Ideal Speedup: NumCores*VectorLength (requires zero scalar, zero serial work)

Bandwidth Bound Performance

Most kernels of (CFD) codes are memory BW

bound i.e. not enough compute intensity (flops/byte)

But: modern chips are unbalanced (high flops/

low byte/s)

Can we make better “use” of

data after we have moved

it into the chip?

Peak “Compute” Gflops/s

Peak “Compute” Gflops/s

without SIMD

Compute intensity (flops/byte)

A
tt

a
in

a
b

le
 G

fl
o

p
s
/s

6

HPC is hard -> Our Approach at PCL

Parallel Algorithms,
supporting hardware features
and parallel libraries
for single and multinode

Application

Architecture

Iterative
Co-Design

Existing and Emerging Workloads:

• HPC

• Finance, Medical

• Big Data

High Order Earthquake Simulations

http://www.seissol.org

Joint Work with Michael Bader (TUM), Alexander Breuer (TUM, SDSC)

This slide deck is based on the ISC’15 paper with an ISC’16 preview

7

“Development of more realistic implementations of dynamic or kinematic

representations of fault rupture, including simulation of higher frequencies (up to

10+ Hz).”

Research Topics in GMP, 2014 Science Collaboration Plan, Southern California Earthquake

Center (SCEC).

8

Motivation

Downtown Napa, Aug 24th, 2014. source: cnn.com ShakeMap, M6.0, 2014-08-24, 3:20 am Downtown Napa, Nov 28th, 2015.

9

Seismic Wave Propagation & Dynamic Rupture Simulation

Initial Fault Stresses
Geological Structure

(Fault Geometry & Material

Properties)

Failure Criterion

SeisSol

Ground Shaking

(Seismograms),

Fault Split, etc.

(Brietzke et al. (2009))

• Full elastic wave equations in 3D and

complex heterogeneous media

• Dynamic Rupture without artificial oscillations

• High order: ADER(time)-DG(space)

• Unstructured tetrahedral meshes

• Highly Optimized Compute Kernels

• Massively parallel

• 191,098,540 tetrahedrons (~1300

per core of SuperMUC, ~130 per

thread of Xeon Phi on Stampede)

• Production run SuperMUC:

• 234,567 time steps equaling 42s

simulated time

• Output: 23 pick-points + high-res

fault

• 7h 15m @ 147,456 SNB-EP cores

• 1.25 PFLOPs incl. setup and

output!! (96.7% of scaling without

setup and output), SuperMUC

• 2 PFLOPS on Stampede

• Frequencies up to 10Hz

 10

The M7.2 Landers 1992 Earthquake

Simulation – Gordon Bell Finalist 14

Taken from a)

vlc-record-2014-08-25-21h40m33s-seissol_isc_hd.mp4-.mp4

• Most-flexible method

• seen as a mixed/hybrid method

• FEM: polynomial (high-order) approximation within the element

• FVM: inter-element convection: up winded numerical fluxes

• pretty new: first serious codes in the 2000s, first ever paper on Navier-Stokes

with DG (CFD) in 1997.

• Very compact element-centric formulation

• Inter-element communication just across adjacent faces

• h- and p-refinement simple

• Unstructured meshes automatically supported

• Local-Time-Stepping relatively simple

• high-order can lead to GEMM-like/demanding routines (e.g. SeisSol modal

basis and Tets)

11

Discontinuous Galerkin in a Small Nutshell

12

Deriving SeisSol’s Compute Kernels

Taken from talk for a)

13

SeisSol’s Compute Kernels – Time Kernel

Zero blocks in 𝐾 𝜉, 𝐾 𝜂 and 𝐾 𝜂

lead to zero values in the

degrees of freedom 𝑄𝑘
𝑛

Matrix size is reduced in each

recursive step

Zero values in 𝑄𝑘
𝑛 also appear in

the multiplications with 𝐴𝑘
∗ , 𝐵𝑘

∗

and 𝐶𝑘
∗

Typical Matrix sizes of production runs

(converge

𝑇𝑘 𝑡𝑛 , 𝑡𝑛+1, 𝑄𝑘
𝑛 =

𝑡𝑛+1 − 𝑡𝑛 𝑗+1

𝑗 + 1 !

Ο−1

𝑗=0

𝜕𝑗

𝜕𝑡𝑗
𝑄𝑘(𝑡

𝑛)

𝜕𝑗+1

𝜕𝑡𝑗+1
𝑄𝑘 = −𝐾 𝜉

𝜕𝑗

𝜕𝑡𝑗
𝑄𝑘 𝐴𝑘

∗ − 𝐾 𝜂
𝜕𝑗

𝜕𝑡𝑗
𝑄𝑘 𝐵𝑘

∗ − 𝐾 𝜁
𝜕𝑗

𝜕𝑡𝑗
𝑄𝑘 𝐶𝑘

∗

Recursive Scheme

14

SeisSol’s Compute Kernels – Local Integration

Sparse/Dense Matrix-Matrix multiplications

Typical Matrix sizes of production runs (convergence order 6): 9𝑥9, 56𝑥9, 56𝑥35

A priori known sparsity patterns

15

SeisSol’s Compute Kernels – Boundary Kernel

Unstructured Access to:
• Flux matrices

• Time integrated DOFs of neighboring elements

• Local Integration (partly L1-cache BW bound, linear memory accesses)

• Consist of time integration, volume integration and local part of boundary integration

• 9 element local matrices (3 sparse 24NNZ, 4 9x9, 2 56x9) and 10 global matrices (3 40x56, 3

35x56, 4 56x56) (all number for sixth order)

• Flop/byte approx. 15 (sixth order)

• Neighbor Integration (in theory compute bound, irregular memory accesses and

higher bandwidth)

• 10 element local matrices (4 9x9, 6 56x9) and 4 out of 48 global matrices (4 56x56)

• Flop/byte approx. 7.5 (sixth order)

• Sparse and Dense Matrix Multiplication of small sizes:

• Due to unstructured meshes we need a prefetching stream that matches the mesh structure

(not a regular DGEMM prefetching strategy)

• Global (irregularly accessed) operators occupy close to 1.5 MB

• Code generator which hard-wires sparsity patterns

 Intel MKL cannot by used, due to blocking and padding overheads. Using MKL instead

of our highly tuned kernels results into 1.5-3X speed-down depending on order.

 Due to switch between dense and sparse implementations: highest efficiency doesn’t

correspond to shortest time to solution

16

SeisSol Key Compute Kernels

17

Systems used in our Performance Comparison

Powermeters:

- Watts-Up?: HSW and WSM

- Megware® Clustsafe®: SNB

- micsmc: (software, co-processor only): KNC

• Highly optimized sparse and dense matrix kernels by offline code generation

and auto-tuning (publically available):

• Intel SSE3, AVX, AVX2, KNC, AVX512F

18

Optimized Matrix Kernels – LIBXSMM

19

Regular Convergence Test

• Regular cubic mesh

with 5 tets per cube

• Error-Norms: Wave

propagation in

diagonal direction with

periodic boundaries

• Hardware: HSW @ 1.9

GHz

• Convergence: Mesh

width

20

What are the benefits from using a higher-order

method?

21

What does this mean for the energy consumption?

HSW: Dual –socket Xeon E5-2699v3, @1.9 GHz

22

What reduction in error is possible in a given

energy-budget?

• computational domain extending

[-15km, 15km]^2 X [0km, 17km]

• free-surface boundary conditions

on the surface and outflow

boundary conditions everywhere

else. 386,518 elements and is

unstructured

• the seismic source is located at

(0,0,-2000). Shown is a only a

part of size [-2km, 15km]^2 X

[0,17 km]

23

The LOH.1 Benchmark

24

GFLOPS for LOH.1

 Switching to newer and denser platforms, the memory bound

 to compute bound ratios increase in higher convergence orders.

25

MFLOPS/W for LOH.1

 In case of lower order runs, the lowest frequency results in the best

 energy to performance ratio (recall micro benchmark results!)

26

Power Consumption in dependence on the VEX on

Haswell

• Shorter vectors result in less performance and less power  good for old code

• FMA significantly increases power efficiency

 whenever we can, we should use long vectors and FMA

• Low-order energy consumption: memory-bound new architectures minor

impact: 2X Westmere to Haswell.

• High-order energy consumption: >10X Westmere to Haswell. 10^5 better

than low-order.

• Very good perf./watt, however: up to 50% useless work!

• Westmere -> Haswell: 14 sparse matrices reduced to 2

• Vector Performance vs. L1 bandwidth

• Using gather/scatter or sparsity code gen. turn DGEMMs in to sparse DGEMMs

which are an L1 bandwidth benchmark: 2 reads, 1 store per cycle

• Max. 50% peak since 2nd FPU is empty

• 50% is not reachable due to address calc. and jumps -> ~25-30% achieved in

practice

• Lots of opportunities for architectural or algorithmic (UQ) improvements

• For best time-to-solution, we also need tricks such as LTS

27

What are Architectural Learnings?

High Order CFD Simulations

http://nek5000.mcs.anl.gov/

https://github.com/maxhutch/nek

Joint Work with Maxwell Hutchinson (U Chicago), David Keyes (KAUST)

ISC’16 paper preview
28

http://nek5000.mcs.anl.gov/
http://nek5000.mcs.anl.gov/
http://nek5000.mcs.anl.gov/
https://github.com/maxhutch/nek
https://github.com/maxhutch/nek

Nek solves the incompressible Navier Stokes equations:

Incl. advection-diffusion equations for scalar variables such as temperature or

mass fractions.

Nek use the spectral element method (SEM) which is a two-level discretization:

a) A tensor product construction of Gauss-Lobatto-Legendre (GLL) quadrature

points within each element -> N^3 DOFs per element

b) Continuity across elements -> forming a mesh

Operators are written as element local operators:

And direct stiffness summation ensure continuity. Furthermore, this reduces the

complexity form O(N^6) to O(N^4).

29

Nek Overview

A typical NekBox run spends <1% in sparse computations & communications,

~40% in vector-vector or matrix-vector operations, ~60% matrix-matrix

operations.

Helmholtz operator:

Basis transformation:

Gradient calculation:

30

NekBox’s main compute routines

31

Helmholtz Operator / Basis Transformation

Performance of the Helmholtz operator reproducer (up) and Basis Transformation

(bottom) using different implementation for the small matrix multiplications. NTS denotes

the usage of non-temporal stores. Measured on Shaheen (32 cores of HSW-EP, 2.3 GHz)

We model the single-mode Rayleigh-Taylor Instability (Boussinesq equations)

32

Some Early High Order Efficiency Results

Log-base 10 error of bubble height and mix volume:

on Shaheen.

We can see that high orders are favorable as they better match modern hardware and have

superior convergence speed.

Library for small matrix multiplications on Intel Architecture

https://github.com/hfp/libxsmm

Joint Work with Hans Pabst (Intel), Greg Henry (Intel)

33

“Improving Performance for
Small GEMM Size Problems.”

• Problem size is characterized by the M, N, and K parameters

• Common building block for high order methods

• Common building block for blocked Sparse Linear Algebra

• A suitable problem size may fall within (M N K)^(1/3) <= 60

• Intel® Math Kernel Library (Intel® MKL) uses MKL_DIRECT_CALL

• These sizes are smaller than regular S/DGEMM blocked macro-kernels,
therefore MKL_DIRECT_CALL helps, but is only the tip of the iceberg- a lot
more performance is necessary/possible

34

Abstract and Motivation

Interface (C/C++ and FORTRAN API)

Simplified interface for matrix-matrix multiplications

• cm x n = cm x n + am x k * bk x n (also full xGEMM)

License

• Open Source Software (BSD 3-clause license)*

35

LIBXSMM

* https://github.com/hfp/libxsmm

Inlined

Compiler
Intel MKL

Assembly

Generator

libxsmm Dispatcher

Application

36

LIBXSMM Implementation

Three Critical Parts of Technology:

• Highly efficient Frontend (Hans Pabst)

• BLAS compatible (DGEMM, SGEMM) (even LD_PRELOAD)

• Support for F77, C89, F2003, C++

• 2-level code caching

• Zero-overhead calls into assembly

• Code Generator (Alex Heinecke)

• Supports all Intel Architectures since 2005, special focus on AVX-512

• Prefetching across small GEMMs

• Can generate *.s, inline assembly into *.h/*.c of the feed the JIT encoder

• JIT (Just-In-Time) Encoder (Greg Henry)

• Encodes an instruction based on basic blocks

• Very fast as no compilation is involved

37

JIT overhead (incl. OS overheads)

0

500

1000

1500

2000

2500

0

20

40

60

80

100

120

2 4 6 8 10 12 14 16 18 20 J
IT

 c
o

m
p

il
e

 t
im

e
 i
n

 M
K

L
 c

a
ll
s

J
IT

 c
o

m
p

il
e

 t
im

e
 i
n

m

ir
c

o
s

e
c

o
n

d
s

M=N=K

Xeon E5-2697v4 - JIT compile time in microseconds

Xeon E5-2697v4 - JIT compile time in MKL calls

38

LIBXSMM Performance on 1c Xeon E5-2697v4 (BDX)

0

4

8

12

16

20

24

28

32

2 4 6 8 10 12 14 16 18 20

G
F

L
O

P
S

 (
D

P
)

M=N=K

LIBXSMM, static LIBXSMM, JIT
Intel MKL 11.3.2, direct-call Eigen-3.3-beta1, ICC 16.0.2, static
Eigen-3.3-beta1, ICC 16.0.2, dynamic Eigen-3.3-beta1, GCC 4.9.2, static
Eigen-3.3-beta1, GCC 4.9.2, dynamic BLAZE 2.6, ICC 16.0.2, static
BLAZE 2.6, ICC 16.0.2, dynamic BLAZE 2.6, GCC 4.9.2, static
BLAZE 2.6, GCC 4.9.2, dynamic PEAK

39

LIBXSMM vs. MKL DGEMM_BATCH

2x Xeon E5-2697v4 (BDX)

0

20

40

60

80

100

120

140

0

100

200

300

400

500

600

700

800

900

8 16 24 32 40 48 56 64 72 80 88 96 104112120128

G
B

/s

G
F

L
O

P
S

 (
D

P
)

M=N=K

BDX - LIBXSMM BDX - MKL 11.3.2 (BATCHED)

BDX - LIBXSMM bandwidth

40

• High order simulations can leverage both memory bandwidth and compute

• Due to faster convergence, they are more energy efficient

• Problem solved?

• No!

• We need a better understanding where these techniques are applicable and

where possible traps are.

• We still need optimal hardware, SeisSol & Nek!

• Therefore:

• We started a collaboration with U Chicago/ ANL on Nek5000 -> first results

have been submitted to ISC’16 and SC’16

• And of course we are looking for more

41

Conclusions

