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• Challenges and Settings in current HPC and Intel’s 

Parallel Computing Lab 

• High Order Earthquake Simulation – SeisSol 

• High Order CFD – NekBox/Nek5000 

• LIBXSMM 

• Conclusion 
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Outline 
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Current & Next Generation Intel® Xeon and Xeon Phi™ Platforms 

Xeon* 

Latest released – Broadwell (14nm process) 

• Intel’s Foundation of HPC Performance 

• Up to 22 cores, Hyperthreading 

• ~66 GB/s stream memory BW (4 ch. DDR4 2400) 

• AVX2 – 256-bit (4 DP, 8 SP flops) -> 0.7 TFLOPS  

Xeon Phi* 

Knights Landing (Future generation, 14nm process),  

• Optimized for highly parallelized compute intensive workloads 

• Common programming model & S/W tools with Xeon 
processors, enabling efficient  app readiness and performance 
tuning 

• 60+ cores, 400+ GB/s stream BW, on-die 2D mesh 

• AVX512– 512-bit (8 DP, 16 SP flops) -> >3 TFLOPS 

• https://software.intel.com/en-us/articles/what-disclosures-has-
intel-made-about-knights-landing 

*Intel Xeon and Intel Xeon Phi are trademarks of Intel Coporation in the US and/or other countries.  
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Modern HPC…. 

𝑺𝒑𝒆𝒆𝒅𝒖𝒑 =
1

𝑆𝑒𝑟𝑖𝑎𝑙𝑓𝑟𝑎𝑐 +
1 − 𝑆𝑒𝑟𝑖𝑎𝑙𝑓𝑟𝑎𝑐
𝑵𝒖𝒎𝑪𝒐𝒓𝒆𝒔

∗
1

𝑆𝑐𝑎𝑙𝑎𝑟𝑓𝑟𝑎𝑐 +
1 − 𝑆𝑐𝑎𝑙𝑎𝑟𝑓𝑟𝑎𝑐
𝑽𝒆𝒄𝒕𝒐𝒓𝑳𝒆𝒏𝒈𝒕𝒉

 

Goal:  Reduce Serial Fraction and Reduce Scalar Fraction of Code 

Ideal Speedup:  NumCores*VectorLength  (requires zero scalar, zero serial work) 

Bandwidth Bound Performance  

Most kernels of (CFD) codes are memory BW 

bound i.e. not enough compute intensity (flops/byte) 

But: modern chips are unbalanced (high flops/ 

low byte/s) 

Can we make better “use” of  

data after we have moved  

it into the chip? 

Peak “Compute” Gflops/s 

Peak “Compute” Gflops/s 

without SIMD 

Compute intensity (flops/byte) 
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HPC is hard -> Our Approach at PCL 

Parallel Algorithms,  
supporting hardware features  
and parallel libraries  
for single and multinode 

Application 

Architecture 

Iterative 
Co-Design 

Existing and Emerging Workloads: 

• HPC 

• Finance, Medical 

• Big Data 



High Order Earthquake Simulations 

http://www.seissol.org 

 

Joint Work with Michael Bader (TUM), Alexander Breuer (TUM, SDSC) 

This slide deck is based on the ISC’15 paper with an ISC’16 preview 
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“Development of more realistic implementations of dynamic or kinematic 

representations of fault rupture, including simulation of higher frequencies (up to 

10+ Hz).”  

Research Topics in GMP, 2014 Science Collaboration Plan, Southern California Earthquake 

Center (SCEC). 
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Motivation 

Downtown Napa, Aug 24th, 2014. source: cnn.com ShakeMap, M6.0, 2014-08-24, 3:20 am Downtown Napa, Nov 28th, 2015. 
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Seismic Wave Propagation & Dynamic Rupture Simulation 

Initial Fault Stresses 
Geological Structure 

(Fault Geometry & Material 

Properties) 

Failure Criterion 

SeisSol 

Ground Shaking 

(Seismograms), 

Fault Split, etc. 

(Brietzke et al. (2009)) 

• Full elastic wave equations in 3D and 

complex heterogeneous media 

• Dynamic Rupture without artificial oscillations 

• High order: ADER(time)-DG(space) 

• Unstructured tetrahedral meshes 

• Highly Optimized Compute Kernels 

• Massively parallel 



• 191,098,540 tetrahedrons (~1300 

per core of SuperMUC, ~130 per 

thread of Xeon Phi on Stampede) 

• Production run SuperMUC: 

• 234,567 time steps equaling 42s 

simulated time 

• Output: 23 pick-points + high-res 

fault 

• 7h 15m @ 147,456 SNB-EP cores 

• 1.25 PFLOPs incl. setup and 

output!! (96.7% of scaling without 

setup and output), SuperMUC 

• 2 PFLOPS on Stampede 

• Frequencies up to 10Hz 
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The M7.2 Landers 1992 Earthquake 

Simulation – Gordon Bell Finalist 14 

Taken from a) 

vlc-record-2014-08-25-21h40m33s-seissol_isc_hd.mp4-.mp4


• Most-flexible method 

• seen as a mixed/hybrid method 

• FEM: polynomial (high-order) approximation within the element 

• FVM: inter-element convection: up winded numerical fluxes 

• pretty new: first serious codes in the 2000s, first ever paper on Navier-Stokes 

with DG (CFD) in 1997. 

• Very compact element-centric formulation 

• Inter-element communication just across adjacent faces 

• h- and p-refinement simple 

• Unstructured meshes automatically supported 

• Local-Time-Stepping relatively simple 

• high-order can lead to GEMM-like/demanding routines (e.g. SeisSol modal 

basis and Tets)  
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Discontinuous Galerkin in a Small Nutshell 
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Deriving SeisSol’s Compute Kernels 

Taken from talk for a)  
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SeisSol’s Compute Kernels – Time Kernel 

Zero blocks in 𝐾 𝜉, 𝐾 𝜂 and 𝐾 𝜂  

lead to zero values in the 

degrees of freedom 𝑄𝑘
𝑛 

Matrix size is reduced in each 

recursive step 

Zero values in 𝑄𝑘
𝑛 also appear in 

the multiplications with 𝐴𝑘
∗ , 𝐵𝑘

∗  

and 𝐶𝑘
∗ 

Typical Matrix sizes of production runs 

(converge 

 

𝑇𝑘 𝑡𝑛 , 𝑡𝑛+1, 𝑄𝑘
𝑛 =  

𝑡𝑛+1 − 𝑡𝑛 𝑗+1

𝑗 + 1 !

Ο−1

𝑗=0

𝜕𝑗

𝜕𝑡𝑗
𝑄𝑘(𝑡

𝑛) 

𝜕𝑗+1

𝜕𝑡𝑗+1
𝑄𝑘 = −𝐾 𝜉

𝜕𝑗

𝜕𝑡𝑗
𝑄𝑘 𝐴𝑘

∗ − 𝐾 𝜂
𝜕𝑗

𝜕𝑡𝑗
𝑄𝑘 𝐵𝑘

∗ − 𝐾 𝜁
𝜕𝑗

𝜕𝑡𝑗
𝑄𝑘 𝐶𝑘

∗ 

Recursive Scheme 



14 

SeisSol’s Compute Kernels – Local Integration 

Sparse/Dense Matrix-Matrix multiplications 

Typical Matrix sizes of production runs (convergence order 6): 9𝑥9, 56𝑥9, 56𝑥35 

A priori known sparsity patterns 
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SeisSol’s Compute Kernels – Boundary Kernel 

Unstructured Access to: 
• Flux matrices 

• Time integrated DOFs of neighboring elements 



• Local Integration (partly L1-cache BW bound, linear memory accesses) 

• Consist of time integration, volume integration and local part of boundary integration 

• 9 element local matrices ( 3 sparse 24NNZ, 4 9x9,  2 56x9) and 10 global matrices (3 40x56, 3 

35x56, 4 56x56) (all number for sixth order) 

• Flop/byte approx. 15 (sixth order) 

• Neighbor  Integration (in theory compute bound, irregular memory accesses and 

higher bandwidth)  

• 10 element local matrices (4 9x9, 6 56x9) and 4 out of 48 global matrices (4 56x56) 

• Flop/byte approx. 7.5 (sixth order) 

• Sparse and Dense Matrix Multiplication of small sizes: 

• Due to unstructured meshes we need a prefetching stream that matches the mesh structure 

(not a regular DGEMM prefetching strategy)  

• Global (irregularly accessed) operators occupy close to 1.5 MB 

• Code generator which hard-wires sparsity patterns 

 Intel MKL cannot by used, due to blocking and padding overheads. Using MKL instead 

of our highly tuned kernels results into 1.5-3X speed-down depending on order. 

 Due to switch between dense and sparse implementations: highest efficiency doesn’t 

correspond to shortest time to solution 
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SeisSol Key Compute Kernels 
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Systems used in our Performance Comparison 

Powermeters: 

- Watts-Up?: HSW and WSM 

- Megware® Clustsafe®: SNB 

- micsmc: (software, co-processor only): KNC 



• Highly optimized sparse and dense matrix kernels by offline code generation 

and auto-tuning (publically available): 

• Intel SSE3, AVX, AVX2, KNC, AVX512F 
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Optimized Matrix Kernels – LIBXSMM 
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Regular Convergence Test 

• Regular cubic mesh 

with 5 tets per cube 

• Error-Norms: Wave 

propagation in 

diagonal direction with 

periodic boundaries 

• Hardware: HSW @ 1.9 

GHz 

• Convergence: Mesh 

width 
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What are the benefits from using a higher-order 

method? 
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What does this mean for the energy consumption?  

HSW: Dual –socket Xeon E5-2699v3, @1.9 GHz 



22 

What reduction in error is possible in a given 

energy-budget? 



• computational domain extending 

[-15km, 15km]^2 X [0km, 17km]  

• free-surface boundary conditions 

on the surface and outflow 

boundary conditions everywhere 

else. 386,518 elements and is 

unstructured  

• the seismic source is located at 

(0,0,-2000). Shown is a only a 

part of size [-2km, 15km]^2 X 

[0,17 km] 
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The LOH.1 Benchmark 
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GFLOPS for LOH.1 

 Switching to newer and denser platforms, the memory bound  

     to compute bound ratios increase in higher convergence orders. 
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MFLOPS/W for LOH.1 

 In case of lower order runs, the lowest frequency results in the best  

     energy to performance ratio (recall micro benchmark results!) 



26 

Power Consumption in dependence on the VEX on 

Haswell 

• Shorter vectors result in less performance and less power  good for old code 

• FMA significantly increases power efficiency 

 

 whenever we can, we should use long vectors and FMA 



• Low-order energy consumption: memory-bound new architectures minor 

impact: 2X Westmere to Haswell.  

• High-order energy consumption: >10X Westmere to Haswell. 10^5 better 

than low-order. 

• Very good perf./watt, however: up to 50% useless work! 

• Westmere -> Haswell: 14 sparse matrices reduced to 2  

• Vector Performance vs. L1 bandwidth 

• Using gather/scatter or sparsity code gen. turn DGEMMs in to sparse DGEMMs 

which are an L1 bandwidth benchmark: 2 reads, 1 store per cycle 

• Max. 50% peak since 2nd FPU is empty 

• 50% is not reachable due to address calc. and jumps -> ~25-30% achieved in 

practice 

• Lots of opportunities for architectural or algorithmic (UQ) improvements 

• For best time-to-solution, we also need tricks such as LTS 
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What are Architectural Learnings? 



High Order CFD Simulations 

http://nek5000.mcs.anl.gov/  

https://github.com/maxhutch/nek  

 

Joint Work with Maxwell Hutchinson (U Chicago), David Keyes (KAUST) 

ISC’16 paper preview 
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Nek solves the incompressible Navier Stokes equations: 

 

Incl. advection-diffusion equations for scalar variables such as temperature or 

mass fractions. 

Nek use the spectral element method (SEM) which is a two-level discretization: 

a) A tensor product construction of Gauss-Lobatto-Legendre (GLL) quadrature 

points within each element -> N^3 DOFs per element 

b) Continuity across elements -> forming a mesh 

Operators are written as element local operators: 

 

And direct stiffness summation ensure continuity. Furthermore, this reduces the 

complexity form O(N^6) to O(N^4). 
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Nek Overview 



A typical NekBox run spends <1% in sparse computations & communications, 

~40% in vector-vector or matrix-vector operations, ~60% matrix-matrix 

operations. 

Helmholtz operator: 

 

 

    

Basis transformation: 

 

 

Gradient calculation: 
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NekBox’s main compute routines 
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Helmholtz Operator / Basis Transformation 

Performance of the Helmholtz operator reproducer  (up) and Basis Transformation 

(bottom) using different implementation for the  small matrix multiplications. NTS denotes 

the usage of non-temporal stores. Measured on Shaheen (32 cores of HSW-EP, 2.3 GHz) 



We model the single-mode Rayleigh-Taylor Instability (Boussinesq equations) 
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Some Early High Order Efficiency Results 

Log-base 10 error of bubble height and mix volume: 

 

 

on Shaheen.  

 

We can see that high orders are favorable as they better match modern hardware and have 

superior convergence speed. 



Library for small matrix multiplications on Intel Architecture 

https://github.com/hfp/libxsmm 

 

Joint Work with Hans Pabst (Intel), Greg Henry (Intel) 
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“Improving Performance for 
Small GEMM Size Problems.” 

 

• Problem size is characterized by the M, N, and K parameters 

• Common building block for high order methods 

• Common building block for blocked Sparse Linear Algebra 

• A suitable problem size may fall within (M N K)^(1/3) <= 60  

• Intel® Math Kernel Library (Intel® MKL) uses MKL_DIRECT_CALL 

• These sizes are smaller than regular S/DGEMM blocked macro-kernels, 
therefore MKL_DIRECT_CALL helps, but is only the tip of the iceberg- a lot 
more performance is necessary/possible 
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Abstract and Motivation 



Interface (C/C++ and FORTRAN API) 

Simplified interface for matrix-matrix multiplications 

• cm x n = cm x n + am x k * bk x n (also full xGEMM) 

 

 

 

 

 

 

License 

• Open Source Software (BSD 3-clause license)* 
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LIBXSMM 

* https://github.com/hfp/libxsmm 

Inlined 

Compiler 
Intel MKL 

Assembly 

Generator 

libxsmm Dispatcher 

Application 



36 

LIBXSMM Implementation 

Three Critical Parts of Technology: 

• Highly efficient Frontend  (Hans Pabst) 

• BLAS compatible (DGEMM, SGEMM) (even LD_PRELOAD) 

• Support for F77, C89, F2003, C++ 

• 2-level code caching 

• Zero-overhead calls into assembly 

• Code Generator (Alex Heinecke) 

• Supports all Intel Architectures since 2005, special focus on AVX-512 

• Prefetching across small GEMMs 

• Can generate *.s, inline assembly into *.h/*.c of the feed the JIT encoder 

• JIT (Just-In-Time) Encoder (Greg Henry) 

• Encodes an instruction based on basic blocks 

• Very fast as no compilation is involved 
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JIT overhead (incl. OS overheads) 
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Xeon E5-2697v4 - JIT compile time in microseconds

Xeon E5-2697v4 - JIT compile time in MKL calls
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LIBXSMM Performance on 1c Xeon E5-2697v4 (BDX) 
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LIBXSMM vs. MKL DGEMM_BATCH  

2x Xeon E5-2697v4 (BDX) 
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• High order simulations can leverage both memory bandwidth and compute 

• Due to faster convergence, they are more energy efficient 

• Problem solved? 

• No! 

• We need a better understanding where these techniques are applicable and 

where possible traps are. 

• We still need optimal hardware, SeisSol & Nek! 

• Therefore: 

• We started a collaboration with U Chicago/ ANL on Nek5000 -> first results 

have been submitted to ISC’16 and SC’16 

• And of course we are looking for more 
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Conclusions 




