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Nektar++ goals

Make it simpler/quicker to develop solvers for a range
of fields and applications

Support 1/2/3D and unstructured hybrid meshes for
complex geometries

Scale to large numbers of processors

Be efficient across a range of polynomial orders and
core counts

Bridge current and future hardware diversity
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Spectral/hp element method
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Motivation

Consider the Helmholtz equation:

Au+Au="T

Put it into weak form:
-(Vu,Vv) + A(u, v) + (VU, V)ha = (1, V)

Expand v and vin terms of local modes (on each
element) or global modes (on whole mesh);

Ug = 2 Up $p() Ut = ) U 0(x)
p i



Framework design
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Implementation choices
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L ocal approaches

These approaches give ditterent performance
results depending on variety of factors (element
type, polynomial order, machine specifications...)

Also very flexible in terms of development and
allowing more advanced features (e.g. adaptivity)

But pertormance is not optimal (and implementation
not easy) when looking to accelerator hardware

Needs better control over memory management
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Collections

 Main idea: Reformulate implementation choices Iin
terms of groups of elements

. 8X,' .
* (Group geometric terms — and apply to entire mesh

49
* Focus around key operators of different complexities:

= Backward transformation: ug = Z Up ¢ p(X)
o

= |nner product: (¥, P))
= Derivatives: ou/ox;

= |nner product w.r.t. derivative: (®;, V®))
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Collections
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Framework design

(IncNavierStokes) (CompressibleFIow) (ImageWarping) @
( SolverUtils )

a4 )
Core Nektar++ libraries

[ MultiRegions J( LocalRegions J( SpatiaIDomains)

cotecions ][ sunagers
\ J

4 )
LibUtilities

Quadrature, bases, partitioning, input/output, linear algebra, interpreter, FFT, ...

\_ J

( Boost ) ( Metis ) ( TinyxmL ) ( Gslib )




Local Matrix

IterPerExp

1. Apply Jacobian
(L1)

2. Multiply by ref.
matrix (N x L2)

fori = 1:N

\

Schemes

" StdMat (standard matrix) )
1. Apply Jacoblan (L1)
N {IOR
2. Multiply by ref. matrix (L3)
g y,
‘SumFac A

1. Apply Jacobian (L1)
2. Mult. first dimension (L3)

3. Mult. second dimension (N x L2)

fori = 1:N




4 guad mesh

Collections

Use BLAS calls throughout

StdMat: | q e
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Intercostal pair lest case
21k prisms

41 k tets (a) backward transform (b) inner product
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Performance overview

StdMat tends to be most effective at lower orders
Collections are less effective at high-order

e Expected behaviour: matrices are very large for 3D
elements - different story in 2D

PhysDeriv benefits from SumFac even at very low
polynomial orders

Similar trends for tetrahedra, but cross-over points are
different
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Towards better performance

(a) backward transform

I IterPerExp

Il SumFac

| | |
B LocalSumFac

B StdMat

Reference BLAS

(a) backward transform

- Il IterPerExp

|l SumFac

| | |
B LocalSumFac

B StdMat

OpenBLAS

Clearly get a different picture!




Autotuning

* |t's somewhat obvious that BLAS choice is very important,
but |lots of other tactors:

= machine-specific effects (processor frequency, cache,
memory bandwidth/bus speed, ...)

= different element types on each processor

* We therefore use a simple auto-tuning strategy at runtime

= Every processor runs each implementation type for
each operator at startup for 1 second each

= Typically takes about 15-20 seconds

e Very simple but effective in selecting optimal scheme
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Example: ONERA M6 wing

Scheme timings [s]

Machine Operator LocalSumFac  IterPerExp  StdMat SumFac

cx2 BwdTrans 0.00213393 0.00209944  0.000202192 0.000534608
[Product WRTBase 0.00245141 0.00200234  0.000233064 0.000521411
[ProductWRTDerivBase 0.0266448 0.017248 0.00201284  0.00298702
PhysDeriv 0.00485056 0.00492247  0.00389733 0.00319892

ARCHER  BwdTrans 0.000643393  0.000638955 2.36882e-05 4.74285e-05
[Product WRTBase 0.000754697  0.000712303 2.78743e-05 0.000150587
[ProductWRTDerivBase 0.00827777 0.00530682  0.00019947  0.000643919
PhysDeriv 0.00075556 0.000595179 0.000287773 0.000318533

Wall-time per timestep |s]

Machine LocalSumFac Auto-tuned collections Improvement

ARCHER  1.308 0.744 43%
cx2 0.356 0.135 62%

Runtime
improvement: 40-60%

Compressible Euler flow
Fully explicit, P =2, 960 cores, ~150kK tets
Inner product w.r.t derivative very important

19



Insight into performance

What determines performance?

Examine hardware counters (core/uncore)
Using Intel Performance Counter Monitor
Intel 17-5960K system

Still somewhat of a work in progress
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Insight into performance

(a) inner product w.r.t. deriv.

T I
B LocalSumFac

Bl IterPerExp
B StdMat
Bl SumFac

(b) physical derivative

i

Low P: smaller
matrices StadMat
uses flops more
effectively, operation
count comparable
to sum factorisation

High P: larger
matrices, Sumfac
UsSes memory
bandwidth more
effectively in
combination with
lower operation
count



summary

Collections speed up our code in fully explicit
problems and explicit parts of implicit solvers

Different schemes allow us to explore wider range
of flop/byte space

Auto-tuning important - maybe a little simplistic
Inroad into using accelerators in a flexible manner

Implicit solvers require different approach
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Thanks for listening!

d.moxey@imperial.ac.uk

www.nektar.info
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