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The weak form of the
Helmholtz equation:

Finite-element assembly
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Solving the Helmholtz equation in Python using Firedrake

from firedrake import *

# Read a mesh and define a function space
mesh = Mesh('filename')
V = FunctionSpace(mesh, "Lagrange", 1)

# Define forcing function for right-hand side
f = Expression("- (lmbda + 2*(n**2)*pi**2) * sin(X[0]*pi*n) * sin(X[1]*pi*n)",
               lmbda=1, n=8)

# Set up the Finite-element weak forms
u = TrialFunction(V)
v = TestFunction(V)

lmbda = 1
a = (dot(grad(v), grad(u)) - lmbda * v * u) * dx
L = v * f * dx

# Solve the resulting finite-element equation
p = Function(V)
solve(a == L, p)

Unified Form Language (UFL) from the FEniCS project to describe weak form of PDE

 v Þ  u + λvu dV = vf  dV∫Ω ∫Ω
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— fenicsproject.org“  The FEniCS Project is a collection of free software for automated, efficient
solution of differential equations.
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— fenicsproject.org

— firedrakeproject.org

“  The FEniCS Project is a collection of free software for automated, efficient
solution of differential equations.

“  Firedrake is an automated system for the portable solution of partial
differential equations using the finite element method (FEM).
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The Firedrake/PyOP2 tool chain
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Two-layered abstraction: Separation of concerns
Unified Form

Language (UFL)

PyOP2
Interface

modified
FFC

Parallel scheduling, code generation

CPU
(OpenMP/
OpenCL)

GPU
(PyCUDA /
PyOpenCL)

Future
arch.

Problem definition
in FEM weak form

Local assembly
kernels (AST)

Parallel loops: kernels
executed over mesh

Explicitly
parallel
hardware-
specific
implemen-
tation

Meshes,
matrices,
vectors

PETSc4py (KSP,
SNES, DMPlex)

Firedrake
Interface

MPI

Geometry,
(non)linear
solves

assembly,
compiled
expressions

FIAT

parallel
loop

parallel
loop

COFFEE
AST optimizer

data structures
(Set, Map, Dat)

Domain 
specialist: 
mathematical
model using
FEM

Numerical 
analyst: 
generation of
FEM kernels

Domain 
specialist: 
mathematical
model on un-
structured grid

Parallel
programming
expert: 
hardware
architectures, 
optimization

Expert for each layer

7 / 37



Parallel computations on
unstructured meshes with PyOP2
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Scientific computations on unstructured meshes
Independent local operations for each element of the mesh described by a kernel.
Reductions aggregate contributions from local operations to produce final result.

PyOP2
Domain-specific language embedded in Python for data parallel computations
Efficiently executes kernels in parallel over unstructured meshes or graphs
Portable programmes for different architectures without code change
Efficiency through runtime code generation and just-in-time (JIT) compilation
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PyOP2 Sets:
nodes (9 entities: 0-8)
elements (9 entities: 0-8)
PyOP2 Map elements-nodes:
elem_nodes = [[0, 1, 2], [1, 3, 2], ...]
PyOP2 Dat on nodes:
coords = [..., [.5,.5], [.5,-.25], [1,.25], ...]
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Mesh topology
Sets – Mesh entities and data DOFs
Maps – Define connectivity between
entities in different Sets

Data
Dats – Defined on Sets (hold data,
completely abstracted vector)
Globals – not associated to a Set
(reduction variables, parameters)
Consts – Global, read-only data

Kernels / parallel loops
Executed in parallel on a Set
through a parallel loop
Read / write / increment data
accessed via maps

Linear algebra
Sparsity patterns defined by Maps
Mat – Matrix data on sparsities
Kernels compute local matrix –
PyOP2 handles global assembly

PyOP2 Data Model
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PyOP2 Dat on nodes:
coords = [..., [.5,.5], [.5,-.25], [1,.25], ...]
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PyOP2 Architecture

OpenCL CUDA
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PyOP2 Device Data Management
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PyOP2 Kernels
& Parallel Loops
Kernels:

"local view" of
the data
sequential
semantics

Parallel loop:

use access
descriptors to
generate
marshalling
code
pass "right data"
to kernel for
each iteration
set element

Kernel for computing the midpoint of a triangle
void midpoint(double p[2], double *coords[2]) {
  p[0] = (coords[0][0] + coords[1][0] + coords[2][0]) / 3.0;
  p[1] = (coords[0][1] + coords[1][1] + coords[2][1]) / 3.0;
}

PyOP2 programme for computing midpoints over the mesh
from pyop2 import op2
op2.init()

vertices = op2.Set(num_vertices)
cells = op2.Set(num_cells)

cell2vertex = op2.Map(cells, vertices, 3, [...])

coordinates = op2.Dat(vertices ** 2, [...], dtype=float)
midpoints = op2.Dat(cells ** 2, dtype=float)

midpoint = op2.Kernel(kernel_code, "midpoint")

op2.par_loop(midpoint, cells,
             midpoints(op2.WRITE),
             coordinates(op2.READ, cell2vertex))

Kernels as abstract syntax tree (AST), C string or Python function
(not currently compiled!)
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Generated sequential code calling the midpoint kernel
// Kernel provided by the user
static inline void midpoint(double p[2], double *coords[2]) {
  p[0] = (coords[0][0] + coords[1][0] + coords[2][0]) / 3.0;
  p[1] = (coords[0][1] + coords[1][1] + coords[2][1]) / 3.0;
}

// Generated marshaling code executing the sequential loop
void wrap_midpoint(int start, int end,
                   double *arg0_0, double *arg1_0, int *arg1_0_map0_0) {
  double *arg1_0_vec[3];
  for ( int n = start; n < end; n++ ) {
    int i = n;
    arg1_0_vec[0] = arg1_0 + (arg1_0_map0_0[i * 3 + 0])* 2;
    arg1_0_vec[1] = arg1_0 + (arg1_0_map0_0[i * 3 + 1])* 2;
    arg1_0_vec[2] = arg1_0 + (arg1_0_map0_0[i * 3 + 2])* 2;
    midpoint(arg0_0 + i * 2, arg1_0_vec);  // call user kernel (inline)
  }
}
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Generated OpenMP code calling the midpoint kernel
// Kernel provided by the user
static inline void midpoint(double p[2], double *coords[2]) {
  p[0] = (coords[0][0] + coords[1][0] + coords[2][0]) / 3.0;
  p[1] = (coords[0][1] + coords[1][1] + coords[2][1]) / 3.0;
}

// Generated marshaling code executing the parallel loop
void wrap_midpoint(int boffset, int nblocks,
                   int *blkmap, int *offset, int *nelems,
                   double *arg0_0, double *arg1_0, int *arg1_0_map0_0) {
  #pragma omp parallel shared(boffset, nblocks, nelems, blkmap) {
    int tid = omp_get_thread_num();
    double *arg1_0_vec[3];
    #pragma omp for schedule(static)
    for ( int __b = boffset; __b < boffset + nblocks; __b++ ) {
      int bid = blkmap[__b];
      int nelem = nelems[bid];
      int efirst = offset[bid];
      for (int n = efirst; n < efirst+ nelem; n++ ) {
        int i = n;
        arg1_0_vec[0] = arg1_0 + (arg1_0_map0_0[i * 3 + 0])* 2;
        arg1_0_vec[1] = arg1_0 + (arg1_0_map0_0[i * 3 + 1])* 2;
        arg1_0_vec[2] = arg1_0 + (arg1_0_map0_0[i * 3 + 2])* 2;
        midpoint(arg0_0 + i * 2, arg1_0_vec);  // call user kernel (inline)
      }
    }
  }
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PyOP2 Backend Selection

opencl.pyOpenCL backend
cuda.pyCUDA backend

openmp.pyOpenMP backend
sequential backend

Set Map DataSet Dat Mat ...

sequential.py

backend dispatch

BackendSelector

backends.py

backend __call__

public API

Set Map DataSet Dat Mat

op2.py

...

__metaclass____init__

__dict__
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Why OP2 is not enough
Static analysis at compile time: "Synthesis is easy, analysis is hard!"
No object introspection, attributes needs to be explicit in code
User code compiled for a specific backend, linked against runtime library

adt_calc kernel in the OP2 Airfoil example application:

op_par_loop(adt_calc,"adt_calc",cells,
            op_arg_dat(p_x,   0,pcell, 2,"double",OP_READ ),
            op_arg_dat(p_x,   1,pcell, 2,"double",OP_READ ),
            op_arg_dat(p_x,   2,pcell, 2,"double",OP_READ ),
            op_arg_dat(p_x,   3,pcell, 2,"double",OP_READ ),
            op_arg_dat(p_q,  -1,OP_ID, 4,"double",OP_READ ),
            op_arg_dat(p_adt,-1,OP_ID, 1,"double",OP_WRITE));

adt_calc kernel in the PyOP2 Airfoil example application:

op2.par_loop(adt_calc, cells,
             p_x(op2.READ, pcell),
             p_q(op2.READ),
             p_adt(op2.WRITE))
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Finite-element computations
with Firedrake
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Firedrake vs. DOLFIN/FEniCS tool chains
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Firedrake concepts

firedrake.Function coordinates

pyop2.Set interior facets

pyop2.Set exterior facets

pyop2.Set cells

PETSc.DMPlex topology

Mesh

firedrake.Mesh mesh

pyop2.Map interior facet - node

pyop2.Map exterior facet - node

pyop2.Map cell - node

pyop2.DataSet dofs

pyop2.Set nodes

ufl.FiniteElement element

FunctionSpace

firedrake.FunctionSpace fs

pyop2.Dat data

Function (ufl.Coefficient)

Function
Field defined on a set of
degrees of freedom (DoFs),
data stored as PyOP2 Dat

FunctionSpace
Characterized by a family
and degree of FE basis
functions, defines DOFs for
function and relationship
to mesh entities

Mesh
Defines abstract topology
by sets of entities and maps
between them (PyOP2 data
structures)
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Driving Finite-element Computations in Firedrake
Solving the Helmholtz equation in Python using Firedrake:

from firedrake import *

# Read a mesh and define a function space
mesh = Mesh('filename')
V = FunctionSpace(mesh, "Lagrange", 1)

# Define forcing function for right-hand side
f = Expression("- (lmbda + 2*(n**2)*pi**2) * sin(X[0]*pi*n) * sin(X[1]*pi*n)",
               lmbda=1, n=8)

# Set up the Finite-element weak forms
u = TrialFunction(V)
v = TestFunction(V)

lmbda = 1
a = (dot(grad(v), grad(u)) - lmbda * v * u) * dx
L = v * f * dx

# Solve the resulting finite-element equation
p = Function(V)
solve(a == L, p)

 v Þ  u + λvu dV = vf  dV∫Ω ∫Ω
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Behind the scenes of the solve call
Firedrake always solves nonlinear problems in resdiual form F(u;v) = 0
Transform linear problem into residual form:

J = a
F = ufl.action(J, u) - L

Jacobian known to be a
Always solved in a single Newton (nonlinear) iteration

Use Newton-like methods from PETSc SNES (optimised C library)
PETSc SNES requires two callbacks to evaluate residual and Jacobian:

implemented as Python functiones (supported by petsc4py)
evaluate residual by assembling residual form

assemble(F, tensor=F_tensor)

evaluate Jacobian by assembling Jacobian form

assemble(J, tensor=J_tensor, bcs=bcs)

assemble invokes PyOP2 with kernels generated from F and J
22 / 37



Applying boundary conditions
Always preserve symmetry of the operator
Avoid costly search of CSR structure to zero rows/columns
Zeroing during assembly, but requires boundary DOFs:

negative row/column indices for boundary DOFs during addto
instructs PETSc to drop entry, leaving 0 in assembled matrix
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Applying boundary conditions
Always preserve symmetry of the operator
Avoid costly search of CSR structure to zero rows/columns
Zeroing during assembly, but requires boundary DOFs:

negative row/column indices for boundary DOFs during addto
instructs PETSc to drop entry, leaving 0 in assembled matrix

Preassembly
A = assemble(a)
b = assemble(L)
solve(A, p, b, bcs=bcs)
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Applying boundary conditions
Always preserve symmetry of the operator
Avoid costly search of CSR structure to zero rows/columns
Zeroing during assembly, but requires boundary DOFs:

negative row/column indices for boundary DOFs during addto
instructs PETSc to drop entry, leaving 0 in assembled matrix
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Applying boundary conditions
Always preserve symmetry of the operator
Avoid costly search of CSR structure to zero rows/columns
Zeroing during assembly, but requires boundary DOFs:

negative row/column indices for boundary DOFs during addto
instructs PETSc to drop entry, leaving 0 in assembled matrix

Preassembly
A = assemble(a)  # A unassembled, A.thunk(bcs) not yet called
b = assemble(L)
solve(A, p, b, bcs=bcs)  # A.thunk(bcs) called, A assembled
# ...
solve(A, p, b, bcs=bcs)  # bcs consistent, no need to reassemble
# ...
solve(A, p, b, bcs=bcs2)  # bcs differ, reassemble, call A.thunk(bcs2)
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Distributed Parallel Computations with MPI
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How do Firedrake/PyOP2 achieve good performance?
No computationally expensive computations (inner loops) in pure Python
Call optimised libraries where possible (PETSc)
Expensive library code implemented in Cython (sparsity builder)
Kernel application over the mesh in natively generated code
Python is not just glue!

Caching
Firedrake

Assembled operators
Function spaces cached on meshes
FFC-generated kernel code

PyOP2

Maps cached on Sets
Sparsity patterns
JIT-compiled code

Only data isn't cached (Function/Dat)

30 / 37



Benchmarks

ARCHER: Cray XC30 with Aries interconnect (Dragonfly topology)
2x 12-core Intel Xeon E5-2697 @ 2.70GHz (Ivy Bridge)
64GB RAM

Compilers
GNU Compilers 4.8.2
Cray MPICH 6.3.1
Compiler flags: -O3 -mavx

Software
DOLFIN 30bbd31 (August 22 2014)
Firedrake c8ed154 (September 25 2014)
PyOP2 f67fd39 (September 24 2014)

Problem setup
DOLFIN + Firedrake: RCM mesh reordering enabled
DOLFIN: quadrature with optimisations enabled
Firedrake: quadrature with COFFEE loop-invariant code motion, alignment and
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from firedrake import *
mesh = Mesh("wave_tank.msh")

V = FunctionSpace(mesh, 'Lagrange', 1)
p = Function(V, name="p")
phi = Function(V, name="phi")

u = TrialFunction(V)
v = TestFunction(V)

p_in = Constant(0.0)
bc = DirichletBC(V, p_in, 1)  # for y=0

T = 10.
dt = 0.001
t = 0

b = assemble(rhs)
dphi = 0.5 * dtc * p
dp = dtc * Ml * b

while t <= T:
    p_in.assign(sin(2*pi*5*t))
    phi -= dphi
    assemble(rhs, tensor=b)
    p += dp
    bc.apply(p)
    phi -= dphi
    t += dt

2nd order PDE:

Formulation with 1st order time
derivatives:

Explicit Wave Equation

+ ϕ = 0
ϕ�2

�t2
 2

= +p
�ϕ
�t

+ ϕ = 0
�p
�t

 2
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Explicit Wave Equation Strong Scaling on UK National Supercomputer ARCHER
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Cahn-Hilliard Equation Strong Scaling on UK National Supercomputer ARCHER
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Summary and additional features

Summary
Two-layer abstraction for FEM computation from high-level descriptions

Firedrake: a performance-portable finite-element computation framework
Drive FE computations from a high-level problem specification
PyOP2: a high-level interface to unstructured mesh based methods
Efficiently execute kernels over an unstructured grid in parallel

Decoupling of Firedrake (FEM) and PyOP2 (parallelisation) layers
Firedrake concepts implemented with PyOP2/PETSc constructs
Portability for unstructured mesh applications: FEM, non-FEM or combinations
Extensible framework beyond FEM computations (e.g. image processing)
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Summary and additional features

Summary
Two-layer abstraction for FEM computation from high-level descriptions

Firedrake: a performance-portable finite-element computation framework
Drive FE computations from a high-level problem specification
PyOP2: a high-level interface to unstructured mesh based methods
Efficiently execute kernels over an unstructured grid in parallel

Decoupling of Firedrake (FEM) and PyOP2 (parallelisation) layers
Firedrake concepts implemented with PyOP2/PETSc constructs
Portability for unstructured mesh applications: FEM, non-FEM or combinations
Extensible framework beyond FEM computations (e.g. image processing)

Preview: Firedrake features not covered
Automatic optimization of generated assembly kernels with COFFEE (Fabio)
Solving PDEs on extruded (semi-structured) meshes (Doru + Andrew)
Building meshes using PETSc DMPlex (Michael)
Using fieldsplit preconditioners for mixed problems
Solving PDEs on immersed manifolds
... 36 / 37



Thank you!
Contact: Florian Rathgeber, @frathgeber, f.rathgeber@imperial.ac.uk

Resources
PyOP2 https://github.com/OP2/PyOP2

PyOP2: A High-Level Framework for Performance-Portable Simulations on
Unstructured Meshes Florian Rathgeber, Graham R. Markall, Lawrence
Mitchell, Nicholas Loriant, David A. Ham, Carlo Bertolli, Paul H.J. Kelly,
WOLFHPC 2012
Performance-Portable Finite Element Assembly Using PyOP2 and FEniCS
Graham R. Markall, Florian Rathgeber, Lawrence Mitchell, Nicolas Loriant,
Carlo Bertolli, David A. Ham, Paul H. J. Kelly , ISC 2013

Firedrake https://github.com/firedrakeproject/firedrake

COFFEE: an Optimizing Compiler for Finite Element Local Assembly Fabio
Luporini, Ana Lucia Varbanescu, Florian Rathgeber, Gheorghe-Teodor Bercea,
J. Ramanujam, David A. Ham, Paul H. J. Kelly, submitted

UFL https://bitbucket.org/mapdes/ufl
FFC https://bitbucket.org/mapdes/ffc

This talk is available at http://kynan.github.io/FiredrakeSeminar2014 (source) 37 / 37
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