Firedrake/PyOP2: an overview

Lawrence Mitchell (lawrence.mitchell@imperial.ac.uk)
• www.firedrakeproject.org

• github.com/OP2/PyOP2

• github.com/firedrakeproject/firedrake

• firedrake@imperial.ac.uk (subscribe first)

• #firedrake on irc.freenode.net

• WPL upstairs (modulo summer building works)
...and a cast of thousands

- Computing
 - Doru Bercea, Fabio Luporini, Florian Rathgeber, Lawrence Mitchell, David Ham, Paul Kelly
- Maths
 - Andrew McRae, Colin Cotter, David Ham, Jemma Shipton, Hiroe Yamazaki
- ESE
 - Michael Lange, Christian Jacobs
- Bath
 - Eike Müller
- Simula
 - Simon Funke
- Former members
 - Graham Markall, Nicolas Loriant
- UROP/project students
 - Kaho Sato, George Boutsioukis
User interface, control execution

Mesh topology, function spaces

Linear, nonlinear solvers

Express FE problems

Execute operation over mesh
Core Firedrake code

- Mesh topology, function spaces
- Linear, nonlinear solvers
- Express FE problems
- Execute operation over mesh
Core Firedrake code

- PETSc DMPIlex
- Linear, nonlinear solvers
- Execute operation over mesh
- Express FE problems
Core Firedrake code

- PETSc DMPllex
- PETSc SNES/KSP

Express FE problems

Execute operation over mesh
Execute operation over mesh

PETSc DMPIlex

PETSc SNES/KSP

FEniCS: UFL, FFC, FIAT
Core Firedrake code

- PETSc DMPIlex
- PETSc SNES/KSP
- FEniCS: UFL, FFC, FIAT
- PyOP2
from firedrake import *

m = Mesh('...')

mesh = ExtrudedMesh(m, layers=20, extrusion_type='uniform')

element1 = ...
element2 = ...

V = FunctionSpace(mesh, element1)
Q = FunctionSpace(mesh, element2)

W = V*Q

u, p = TrialFunctions(W)
v, q = TestFunctions(W)

a = fn(u, p, v, q)
L = fn(v, q)

solve(a == L, ...)
from firedrake import *

m = Mesh('...')

mesh = ExtrudedMesh(m, layers=20, extrusion_type='uniform')

element1 = ...
element2 = ...

V = FunctionSpace(mesh, element1)
Q = FunctionSpace(mesh, element2)

W = V*Q

u, p = TrialFunctions(W)
v, q = TestFunctions(W)

a = fn(u, p, v, q)
L = fn(v, q)

solve(a == L, ...)
from firedrake import *

m = Mesh('...')

mesh = ExtrudedMesh(m, layers=20, extrusion_type='uniform')

element1 = ...
element2 = ...

V = FunctionSpace(mesh, element1)
Q = FunctionSpace(mesh, element2)

W = V*Q

u, p = TrialFunctions(W)
v, q = TestFunctions(W)

a = fn(u, p, v, q)
L = fn(v, q)

solve(a == L, ...)
from firedrake import *

m = Mesh('...')

mesh = ExtrudedMesh(m, layers=20, extrusion_type='uniform')

V = FunctionSpace(mesh, element1)
Q = FunctionSpace(mesh, element2)

W = V*Q

u, p = TrialFunctions(W)

v, q = TestFunctions(W)

a = fn(u, p, v, q)

L = fn(v, q)

solve(a == L, ...)
from firedrake import *

m = Mesh('...')

mesh = ExtrudedMesh(m, layers=20, extrusion_type='uniform')

element1 = ...
element2 = ...

V = FunctionSpace(mesh, element1)
Q = FunctionSpace(mesh, element2)

W = V*Q

u, p = TrialFunctions(W)
v, q = TestFunctions(W)

a = fn(u, p, v, q)
L = fn(v, q)

solve(a == L, ...)
from firedrake import *

m = Mesh('...')

mesh = ExtrudedMesh(m, layers=20, extrusion_type='uniform')

element1 = ...
element2 = ...

V = FunctionSpace(mesh, element1)
Q = FunctionSpace(mesh, element2)

W = V*Q

u, p = TrialFunctions(W)
v, q = TestFunctions(W)

a = fn(u, p, v, q)
L = fn(v, q)

solve(a == L, ...)
PyOP2
• Computation on a fixed-degree graph (unstructured mesh)

• Local computation *kernel* executed everywhere

 • Data parallel

• *Reductions* aggregate contributions into result

• No finite element assumption (almost)
Mesh topology

- Effectively a graph
- Sets represent nodes in the graph
- Maps define edges between nodes
- Maps are constant *arity*
 - Cannot have map from vertices to cells (say)
from pyop2 import op2
op2.init()

cells = op2.Set(3)
edges = op2.Set(7)
vertices = op2.Set(5)

c2e = op2.Map(cells, edges, 3,
 [[0, 1, 2],
 [2, 3, 4],
 [4, 5, 6]])

c2v = op2.Map(cells, vertices, 3,
 [[0, 1, 2],
 [1, 2, 3],
 [2, 3, 4]])

e2v = op2.Map(edges, vertices, 2,
 [[0, 2],
 [0, 1],
 [1, 2],
 [1, 3],
 [2, 3],
 [2, 4],
 [3, 4]])
Data

- Data defined on DataSets (Set + number of entries per set entity), any C type

```python
from pyop2 import op2
op2.init()
cells = op2.Set(3)
dofs = op2.Set(18)

field = op2.Dat(dofs**1, dtype=np.float64)  # 1 dof per set entity
vector_field = op2.Dat(dofs**2, dtype=np.float32)  # 2 dofs per set entity
```
Kernel

• Acts on local data, cannot read outside it

```python
from pyop2 import op2
op2.init()

edges = op2.Set(...)
vertices = op2.Set(...)

midpoint = op2.Dat(edges**2)
coords = op2.Dat(vertices**2)

e2v = op2.Map(edges, vertices, 2, ...)

midpoint_kernel = op2.Kernel('"

    void midpoint(double *mid, double **vtx_coords) {
        mid[0] = (vtx_coords[0][0] + vtx_coords[1][0]) / 2;
        mid[1] = (vtx_coords[0][1] + vtx_coords[1][1]) / 2;
    }"

', "midpoint")
```
Parallel loop

- Execute *kernel* over set, reading/writing data
 - Describe: iteration space (set/subset), data to be accessed, access type (READ, WRITE, RW, INC), indirection.
- MPI-collective
 - All processes must hit parallel loop (even if they are iterating over zero-sized domain)
 - Careful applying boundary conditions!
 - Kernel must be *identical* everywhere
 - Run with `export PYOP2_DEBUG=1` to find issues
from pyop2 import op2
op2.init()

edges = op2.Set(...)
vertices = op2.Set(...)

midpoint = op2.Dat(edges**2)
coords = op2.Dat(vertices**2)

e2v = op2.Map(edges, vertices, 2, ...)

midpoint_kernel = ...

op2.par_loop(midpoint_kernel, edges,
midpoint(op2.WRITE),
coords(op2.READ, e2v))

Direct write to midpoint
Indirect read from coords through e2v
Code gen

- API carefully designed to make automated reasoning about execution easy "synthesis, not analysis"

- Access descriptors allow automatic reasoning about data dependencies

 - e.g. no need to halo exchange on WRITE data

 - But mark as dirty so subsequent reads force exchange

- MPI-collective semantics mean we don't need to worry about other processes not posting halo sends/receives

- Shared memory: colour for non-conflicting execution

 - Assumption: we're allowed to reorder computations
void midpoint(double *mid, double **vtx_coords) {
 mid[0] = (vtx_coords[0][0] + vtx_coords[1][0]) / 2;
 mid[1] = (vtx_coords[0][1] + vtx_coords[1][1]) / 2;
}

void wrap_midpoint(int start, int end, double *midpoint, double *coords, int *e2v) {
 double *vtx_coords[2];
 for (int i = start; i < end; i++) {
 vtx_coords[0] = coords + (e2v[i * 2 + 0]) * 2;
 vtx_coords[1] = coords + (e2v[i * 2 + 1]) * 2;
 midpoint(midpoint + i * 2, vtx_coords);
 }
}
- MPI parallelism handled in Python

- Entities must be *ordered*, extents can encode iteration order. Effectively, this puts constraint on numbering in Maps.
• *Core* entries: can compute without up to date halos

• *Owned* entries: local data, needs up to date halos

• *Exec halo* entries: remote data, but writes (through a map) to local data

• *Non-exec halo* entries: remote data, read (through a map) when computing on exec halo

• For FE, the stencil *on the topology* tells us how to mark topological entities, and hence degrees of freedom

```python
cells = op2.Set([1, 3, 5, 6])
dofs = op2.Set([43, 52, 63, 68])

c2d = op2.Map(cells, dofs, 3,
  [
    # core entry (points to within first 43 dofs)
    [0, 32, 40],
    # owned entries (point to within first 52 dofs, but not all within first 43)
    [0, 43, 44],
    [1, 45, 51],
    # exec halo entries (point to within first 63 dofs, but not all within first 52)
    [2, 52, 57],
    [55, 56, 62],
    # non-exec halo entries (anything else)
    [63, 64, 65]
  ])
```
Extruded meshes

PyOP2 support
• Structured in *vertical* direction

• Map implicit (just provide *base* map plus offsets)

• Amortizes cost of indirect lookups

 • 70% peak memory bandwidth

• We measure *valuable bandwidth*: assume we could move data *perfectly* and therefore only ever touch it once. A *lower bound* on actual data movement.
Does it work?
12 core SandyBridge; STREAM triad 42 GB/s
assemble(v*dx)
Indirection amortized after around 20 layers
How does it work?
- Indirect lookup for base cell dofs
- Direct increment walking up column
- Extra PyOP2 types
- Sets carry number of layers
- Maps carry offset for each indirected dof

```
base_cells = op2.Set(1)
ext_cells = op2.ExtrudedSet(base, layers=5)
base_dofs = op2.Set(total_dofs)
ext_dofs = op2.ExtrudedSet(base_dofs, layers=5)

cell2dof = op2.Map(ext_cells, ext_dofs,
  12,
  vals=[a, a+1, a+2, b, b+1, b+2,
        c, c+1, c+2, c+3, c+4, c+5],
  offset=[2, 2, 2, 2, 2, 2,
          4, 4, 4, 4, 4, 4])
```
void uniform_extrusion_kernel(double **base_coords, double **ext_coords,
 int **layer, double *layer_height) {
 for (int d = 0; d < 3; d++) {
 for (int c = 0; c < 2; c++) {
 ext_coords[2*d][c] = base_coords[d][c];
 ext_coords[2*d+1][c] = base_coords[d][c];
 }
 ext_coords[2*d][2] = layer_height * (layer[0][0]);
 ext_coords[2*d+1][2] = layer_height * (layer[0][0] + 1);
 }
}

void wrap_uniform_extrusion_kernel(int start, int end, double *base_coords,
 int *base_coords_map, double *ext_coords,
 int *ext_coords_map, int *layer,
 int *layer_map, double *layer_height,
 int start_layer, int end_layer) {
 double *base_packed[3];
 double *ext_packed[6];
 int *layer_packed[1];
 for (int i = start; i < end; i++) {
 base_packed[0] = base_coords + (base_coords_map[i * 3 + 0]) * 2;
 base_packed[1] = base_coords + (base_coords_map[i * 3 + 1]) * 2;
 base_packed[2] = base_coords + (base_coords_map[i * 3 + 2]) * 2;
 ext_packed[0] = ext_coords + (ext_coords_map[i * 6 + 0]) * 3;
 ext_packed[1] = ext_coords + (ext_coords_map[i * 6 + 1]) * 3;
 ext_packed[2] = ext_coords + (ext_coords_map[i * 6 + 2]) * 3;
 ext_packed[3] = ext_coords + (ext_coords_map[i * 6 + 3]) * 3;
 ext_packed[4] = ext_coords + (ext_coords_map[i * 6 + 4]) * 3;
 ext_packed[5] = ext_coords + (ext_coords_map[i * 6 + 5]) * 3;
 layer_packed[0] = layer + (layer_map[i * 1 + 0]) * 1;
 for (int j = start_layer; j < end_layer; ++j) {
 uniform_extrusion_kernel(base_packed, ext_packed, layer_packed, layer_height);
 ext_packed[0] += 3;
 ext_packed[1] += 3;
 ext_packed[2] += 3;
 ext_packed[3] += 3;
 ext_packed[4] += 3;
 ext_packed[5] += 3;
 layer_packed[0] += 1;
 }
 }
}
Platform portability

- Theory: PyOP2 code is portable across hardware platforms (CPU/GPU) since intent of iteration is separated from its implementation.
- Some PyOP2 codes work on both CPU and GPU.
- FEM kernels need different implementations on CPU/GPU (practice):
 - CPU: assemble multiple element tensors per thread.
 - GPU: one element tensor *entry* per thread.
- Reality: PyOP2 offers *potential* for platform portability, but is currently single (CPU (+ shared memory)) platform for practical purposes.
Firedrake
• Simplices

• Simplex x interval

• H^1, $H(\text{div})$, $H(\text{curl})$ and L^2 discretisations

• Mixed finite elements

• Parallel (MPI [+ OpenMP]) via PyOP2
No computation

• Firedrake carries out (almost) zero computation itself
 • Constructing dof maps for function spaces is our job (not really an abstraction available here)

• All solving is devolved to PETSc
 • Abstraction: non-linear solves require residual evaluation and matrix-vector products (of the linearisation of the residual)

• All FE assembly devolved to PyOP2
 • Abstraction: FE assembly is the evaluation of a local kernel repeatedly over a mesh of global data
(Almost) no code

$ cloc firedrake/
 30 text files.
 30 unique files.
 1 file ignored.

http://cloc.sourceforge.net v 1.60 T=0.17 s (168.6 files/s, 50255.0 lines/s)

<table>
<thead>
<tr>
<th>Language</th>
<th>files</th>
<th>blank</th>
<th>comment</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Python</td>
<td>27</td>
<td>1359</td>
<td>1865</td>
<td>4282</td>
</tr>
<tr>
<td>Cython</td>
<td>1</td>
<td>107</td>
<td>138</td>
<td>620</td>
</tr>
<tr>
<td>C/C++ Header</td>
<td>1</td>
<td>33</td>
<td>37</td>
<td>204</td>
</tr>
<tr>
<td>SUM:</td>
<td>29</td>
<td>1499</td>
<td>2040</td>
<td>5106</td>
</tr>
</tbody>
</table>
Why?
• Use existing solutions wherever possible
• Militant about sticking to abstractions
 • The only way to do mesh-size operations is with PyOP2 loops
 • Mesh setup an exception, it is by far the most difficult bit of code
Behind the solve call

```python
from firedrake import *

m = Mesh('...')
mesh = ExtrudedMesh(m, layers=20, extrusion_type='uniform')

element1 = ...
element2 = ...

V = FunctionSpace(mesh, element1)
Q = FunctionSpace(mesh, element2)

W = V*Q

u, p = TrialFunctions(W)
v, q = TestFunctions(W)

a = fn(u, p, v, q)
L = fn(v, q)
solve(a == L, ...)
```
solve(a == L, u, ...)

- Always solve using nonlinear solver

- Jacobian is \(a \)

- Residual is \(\text{action}(a, u) - L =: F \)

- Solver is a PETSc SNES

 - provide residual evaluation \(\text{assemble}(F) \)

 - and Jacobian \(\text{assemble}(a) \)
Inside assemble

- Call ffc to turn form into PyOP2 kernels (COFFEE AST)
- inspect form to determine coefficients and any (maybe) trial and test functions
- Construct arguments to PyOP2 par_loop
- Call par_loop
for integral_type, coords, coefficients, kernel in kernels:
 m = coords.function_space().mesh()
 if integral_type == 'cell':
 if is_mat:
 tensor_arg = mat_tensor(op2.INC,
 (s.cell_node_map()[op2.i[0]],
 s.cell_node_map()[op2.i[1]]))
 elif is_vec:
 tensor_arg = vec_tensor(op2.INC,
 s.cell_node_map()[op2.i[0]])
 else:
 tensor_arg = tensor(op2.INC)

 itspace = m.cell_set
 itspace._extruded_bcs = extruded_bcs
 args = [kernel, itspace, tensor_arg, coords.dat(op2.READ, coords.cell_node_map(),
 flatten=True)]

 for c in coefficients:
 args.append(c.dat(op2.READ, c.cell_node_map(),
 flatten=True))

 op2.par_loop(*args)
Inside par_loop

- Kernel optimised by COFFEE
 - LICM, padding and alignment, vectorisation
- arxiv:1407.0904 [cs.MS]
 - For low-order extruded elements obtain 70% FP peak on prisms for matrix assembly.
- Wrapper code generated, compiled, loaded into process
- Call generated function with appropriate code
Boundary conditions

- http://firedrakeproject.org/boundary_conditions.html

- Effectively just throw away entries in Jacobian corresponding to bc dofs, put a 1 on the diagonal
 - PETSc makes this easy: pass negative row/column index to MatSetValues

- Set residual on boundary dofs to zero

- This approach maintains:
 - symmetry (or skew-symmetry)
 - positive (semi-)definiteness
 - diagonal dominance
Extruded Firedrake

- *Extensions* to existing UFL syntax
- *Extensions* to PyOP2 types (seen these)
 - Not all extruded composes with non-extruded
 - can't do *direct* loops over extruded and non-extruded dats, can loop over extruded set and read non-extruded dat *indirectly*
Meshes

```python
from firedrake import *

m = CircleManifoldMesh(20, radius=10)
annulus = ExtrudedMesh(m, layers=10, layer_height=0.5,
            extrusion_type='radial')
cylinder = ExtrudedMesh(m, layers=10, layer_height=0.5,
            extrusion_type='uniform')

File('annulus.pvd') << annulus.coordinates
File('cylinder.pvd') << cylinder.coordinates
```
• *Uniform* extrusion increases topological and geometric dimension of cells

• *Radial* extrusion increases topological, but maintains geometric dimension

• Jacobians (currently) assume affine cells
Elements

- Anything that can be expressed as tensor product of simplex (1 or 2d) with interval
 - e.g. Q2-P1dg for Stokes not supported
- You can have a full discrete de Rham product complex
N2curl on prism
N2curl on prism
N2curl on prism

\[
\begin{align*}
N2_1 &= \text{FiniteElement}("N2curl", \text{triangle}, 1) \\
CG_2 &= \text{FiniteElement}("CG", \text{interval}, 2) \\
Ned_horiz &= \text{HCurl}((\text{OuterProductElement}(N2_1, CG_2))
\end{align*}
\]
N2curl on prism

\[
\begin{align*}
N2_1 &= \text{FiniteElement}("N2curl", \text{triangle}, 1) \\
CG_2 &= \text{FiniteElement}("CG", \text{interval}, 2) \\
Ned_{\text{horiz}} &= \text{HCurl} (\text{OuterProductElement}(N2_1, CG_2)) \\
P2tri &= \text{FiniteElement}("CG", \text{triangle}, 2) \\
P1dg &= \text{FiniteElement}("DG", \text{interval}, 1) \\
Ned_{\text{vert}} &= \text{HCurl} (\text{OuterProductElement}(P2tri, P1dg))
\end{align*}
\]
N2curl on prism

N2_1 = FiniteElement("N2curl", triangle, 1)
CG_2 = FiniteElement("CG", interval, 2)
Ned_horiz = HCurl(OuterProductElement(N2_1, CG_2))
P2tri = FiniteElement("CG", triangle, 2)
P1dg = FiniteElement("DG", interval, 1)
Ned_vert = HCurl(OuterProductElement(P2tri, P1dg))
Ned_wedge = Ned_horiz + Ned_vert
Escaping abstractions

• What if I want to code a slope limiter?
 • UFL no good

• Firedrake allows you to code PyOP2 par_loops directly
 • Also some syntax to ease things

• PyOP2 doesn't have an "escape hatch"
• P1 field on vertices taking maximum value of P0 field on cells adjacent to those vertices

```python
m = UnitSquareMesh(20, 20)
cg = FunctionSpace(m, "CG", 1)
dg = FunctionSpace(m, "DG", 0)
c = Function(cg)
d = Function(dg)
par_loop('for (int i=0; i<c.dofs; i++)
    c[i][0] = fmax(c[i][0], d[0][0]);',
    # walk over cells
dx,
    # associate 'c' variable with c field, 'd' with d
    { 'c': (c, RW), 'd': (d, READ) })
```
Block solvers
• PETSc provides nice interface to block preconditioning

 • Schur complements (2x2 blocks)

 • Block Jacobi/Gauss-Seidel (nxn blocks)

 • We (basically) inherit this

 • Can either precondition with approximation of inverse of operator, or with approximation of inverse of some spectrally equivalent operator
Mixed Poisson

Find \(\sigma \in \Sigma \subset H(\text{div}) \), \(\nu \in V \subset L^2 \) satisfying

\[
\langle \sigma, \tau \rangle - \langle u, \nabla \cdot \tau \rangle = 0, \quad \forall \, \tau \in \Sigma,
\]

\[
\langle \nabla \cdot \sigma, \nu \rangle = \langle f, \nu \rangle, \quad \forall \, \nu \in V.
\]

A good preconditioner for this problem is the inverse of the \(H(\text{div}) \) inner product for the \(H(\text{div}) \) piece, and the inverse of the \(L^2 \) mass matrix for the \(L^2 \) piece [Arnold, Falk, Winther, Multigrid in \(H(\text{div}) \) and \(H(\text{curl}) \)].
from firedrake import *
m = UnitSquareMesh(40, 40)
Sigma = FunctionSpace(m, 'BDM', 2, name="sigma")
V = FunctionSpace(m, 'DG', 1, name="v")
W = Sigma * V
sigma, u = TrialFunctions(W)
tau, v = TestFunctions(W)
n = FacetNormal(m)
a = (inner(sigma, tau) - div(tau)*u + div(sigma)*v)*dx
L = - 4*dot(tau, n)*ds(4) - 2*dot(tau, n)*ds(3)
aP = (inner(sigma, tau) + div(sigma)*div(tau) + u*v)*dx
bcs = [DirichletBC(W[0], (0, 0), (1, 2))]
w = Function(W)
solve(a == L, w, Jp=aP, bcs=bcs,
 solver_parameters={
 'ksp_type': 'gmres',
 'pc_type': 'fieldsplit',
 'ksp_converged_reason': True,
 'pc_fieldsplit_type': 'additive',
 'fieldsplit_sigma_ksp_type': 'preonly',
 'fieldsplit_sigma_pc_type': 'lu',
 'fieldsplit_v_ksp_type': 'richardson',
 'fieldsplit_v_pc_type': 'jacobi',
 'fieldsplit_v_ksp_max_it': 5})

uexact = Function(V)
uexact.interpolate(Expression("2 + 2*x[1]"))
sigma, u = w.split()
assert errornorm(u, uexact) < 1e-6
Could have used full Schur complement PC on original system, converges in fewer iterations but takes about 5x as long.

```python
solve(a == L, w, bcs=bcs,
    solver_parameters={
        'ksp_type': 'gmres',
        'pc_type': 'fieldsplit',
        'ksp_converged_reason': True,
        'ksp_monitor_true_residual': True,
        'pc_fieldsplit_type': 'schur',
        'pc_fieldsplit_schur_fact_type': 'full',
        'fieldsplit_sigma_ksp_type': 'preonly',
        'fieldsplit_sigma_pc_type': 'lu'})
```

Obviously for large problems we can't invert with LU, working on good PCs for problems in H(div) and H(curl)
More questions?