Computing multiple solutions of PDEs

P. E. Farrell

University of Oxford

September 30, 2020

Section 1

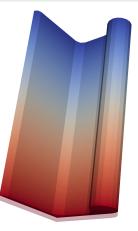
Introduction

Can you conduct an experiment twice

and get two different answers?

Can you conduct an experiment twice

and get two different answers?

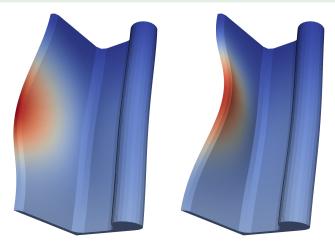


Axial displacement test of an Embraer aircraft stiffener.

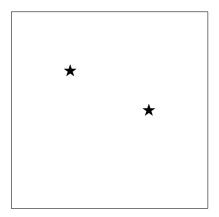
P. E	. Farrel	(Ox	ford)

Can you conduct an experiment twice ...

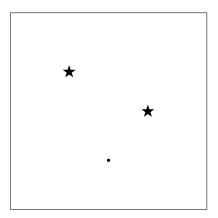
and get two different answers?



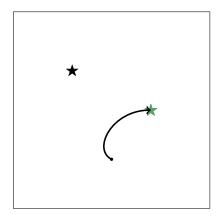
Two different, stable configurations.



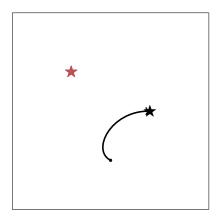
A PDE with two unknown solutions



Start from some initial guess



We converge to one solution, our prediction



But nature has chosen another (unknown) solution!

Mathematical formulation

Compute the multiple solutions u of an equation

$$f(u,\lambda) = 0$$
$$f: V \times \mathbb{R} \to V^*$$

as a function of a parameter λ .

Mathematical formulation

Compute the multiple solutions u of an equation

$$f(u,\lambda) = 0$$
$$f: V \times \mathbb{R} \to V^*$$

as a function of a parameter λ .

What is f?

f could represent stationary states, periodic orbits, bifurcation points in another parameter, \ldots

Applications

Navier–Stokes, hyperelasticity, topology optimisation, liquid crystals, Bose–Einstein condensates, ...

Section 2

Deflation

Deflation

Fix parameter λ . Given

- ▶ a Fréchet differentiable residual $\mathcal{F}: V \to V^*$
- ▶ a solution $r \in V$, $\mathcal{F}(r) = 0$, $\mathcal{F}'(r)$ nonsingular

Deflation

Fix parameter λ . Given

- ▶ a Fréchet differentiable residual $\mathcal{F}: V \to V^*$
- ▶ a solution $r \in V$, $\mathcal{F}(r) = 0$, $\mathcal{F}'(r)$ nonsingular

construct a new nonlinear problem $\mathcal{G}:V\to V^*$ such that:

Deflation

Fix parameter λ . Given

- ▶ a Fréchet differentiable residual $\mathcal{F}: V \to V^*$
- ▶ a solution $r \in V$, $\mathcal{F}(r) = 0$, $\mathcal{F}'(r)$ nonsingular

construct a new nonlinear problem $\mathcal{G}: V \to V^*$ such that:

• (Preservation of solutions) $\mathcal{F}(\tilde{r}) = 0 \iff \mathcal{G}(\tilde{r}) = 0 \ \forall \ \tilde{r} \neq r;$

Deflation

Fix parameter λ . Given

- ▶ a Fréchet differentiable residual $\mathcal{F}: V \to V^*$
- ▶ a solution $r \in V$, $\mathcal{F}(r) = 0$, $\mathcal{F}'(r)$ nonsingular

construct a **new nonlinear problem** $\mathcal{G}: V \to V^*$ such that:

- (Preservation of solutions) $\mathcal{F}(\tilde{r}) = 0 \iff \mathcal{G}(\tilde{r}) = 0 \ \forall \ \tilde{r} \neq r;$
- (Deflation property) Newton's method applied to G will never converge to r again, starting from any initial guess.

Deflation

Fix parameter λ . Given

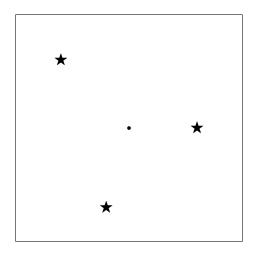
- ▶ a Fréchet differentiable residual $\mathcal{F}: V \to V^*$
- ▶ a solution $r \in V$, $\mathcal{F}(r) = 0$, $\mathcal{F}'(r)$ nonsingular

construct a **new nonlinear problem** $\mathcal{G}: V \to V^*$ such that:

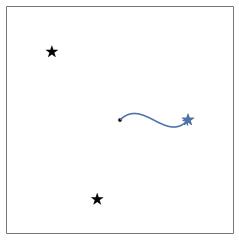
- (Preservation of solutions) $\mathcal{F}(\tilde{r}) = 0 \iff \mathcal{G}(\tilde{r}) = 0 \ \forall \ \tilde{r} \neq r;$
- (Deflation property) Newton's method applied to G will never converge to r again, starting from any initial guess.

Find more solutions, starting from the same initial guess.

Finding many solutions from the same guess



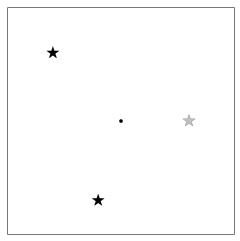
Finding many solutions from the same guess



Step I: Newton from initial guess

P. E. Farrell	(Oxford))
---------------	----------	---

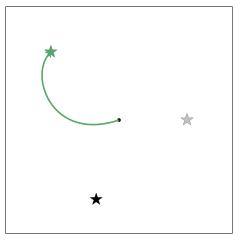
Finding many solutions from the same guess



Step II: deflate solution found

P. E. Farrell

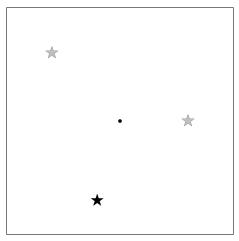
Finding many solutions from the same guess



Step I: Newton from initial guess

P. E	E. Farre	ll (O	xford)

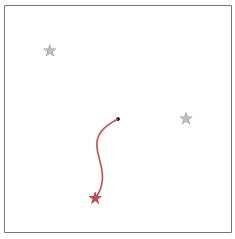
Finding many solutions from the same guess



Step II: deflate solution found

P. E. Farrell	(Oxford)
---------------	----------

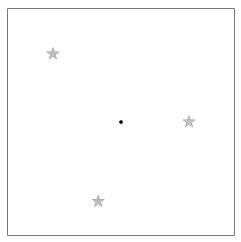
Finding many solutions from the same guess



Step I: Newton from initial guess

P. E. Farrell	(Oxford)

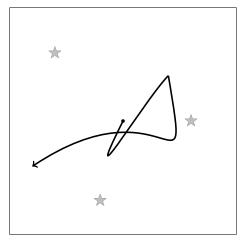
Finding many solutions from the same guess



Step II: deflate solution found

E. Farrell (Oxford)

Finding many solutions from the same guess



Step III: termination on nonconvergence

P. E	E. Farre	ell (O	xford)

Finding many solutions from the same guess



Step III: termination on nonconvergence

P. E	E. Farre	ell (O	xford)

Construction of deflated problems

A nonlinear transformation

$$\mathcal{G}(u) = \mathcal{M}(u; r) \mathcal{F}(u)$$

Construction of deflated problems

A nonlinear transformation

$$\mathcal{G}(u) = \mathcal{M}(u; r) \mathcal{F}(u)$$

A deflation operator

We say $\mathcal{M}(u; r)$ is a deflation operator if for any sequence $u \to r$ $\liminf_{u \to r} \|\mathcal{G}(u)\|_{V^*} = \liminf_{u \to r} \|\mathcal{M}(u; r)\mathcal{F}(u)\|_{V^*} > 0$

Construction of deflated problems

A nonlinear transformation

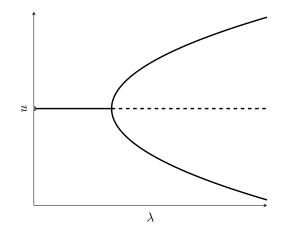
$$\mathcal{G}(u) = \mathcal{M}(u; r) \mathcal{F}(u)$$

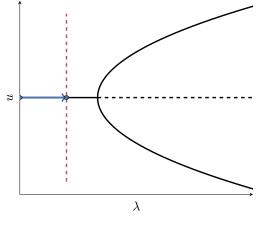
A deflation operator

We say $\mathcal{M}(u; r)$ is a deflation operator if for any sequence $u \to r$ $\liminf_{u \to r} \|\mathcal{G}(u)\|_{V^*} = \liminf_{u \to r} \|\mathcal{M}(u; r)\mathcal{F}(u)\|_{V^*} > 0$

Theorem (F., Birkisson, Funke, 2014)

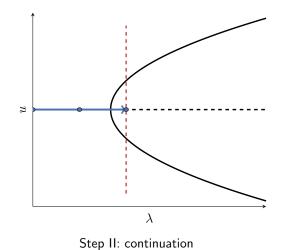
This is a deflation operator for $p\geq 1$: $\mathcal{M}(u;r)=\left(\frac{1}{\|u-r\|^p}+1\right)$



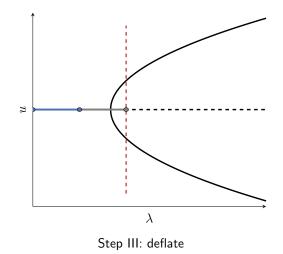


Step I: continuation

PF	Farrell	(Oxford)	١
	i ai cii		

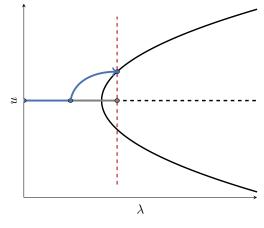


Ρ.	Ε.	Farrel	1 (\mathbf{O}	cfor	d)
	-	1 units	• •	0,		u,



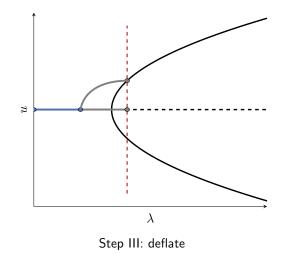
P. 6	E. Farn	ell (O	xford)
			viola)

Deflated continuation



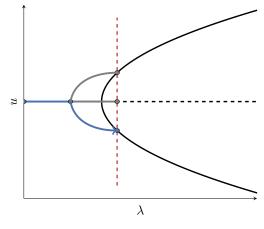
Step III+: solve deflated problem

Ρ.	Ε.	Farre	(0	kford)



P	F	Farre	(0	xfor	(h
	-	Tarre		0	~101	u)

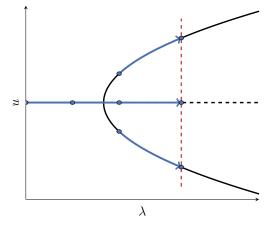
Deflated continuation



Step III+: solve deflated problem

P. E.	Farrell	(Oxford)

Deflated continuation

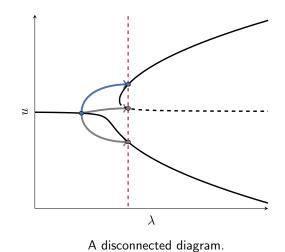


Step IV: continuation on branches

Ρ.	Ε.	Farrel	1 (0	xfo	rd)	

Deflation

Deflated continuation



P .	Ε.	Farrel	((Ox	ford	١

An example: the winged cusp

The winged cusp for $x \in \mathbb{R}$

$$f(x,\lambda) = x^3 - 2\lambda x + \lambda^2 - 2\lambda + 1 = 0$$

Section 3

Applications

Stationary Gross-Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + \frac{x^2 + y^2 + z^2}{2}\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Stationary Gross-Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + \frac{x^2 + y^2 + z^2}{2}\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Solutions for $\mu=6.$ A vortex line and a planar dark soliton.

Stationary Gross-Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + \frac{x^2 + y^2 + z^2}{2}\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Solutions for $\mu = 6$. A pair of vortex lines.

Stationary Gross-Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + \frac{x^2 + y^2 + z^2}{2}\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Solutions for $\mu = 6$. A vortex star.

Stationary Gross-Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + \frac{x^2 + y^2 + z^2}{2}\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Solutions for $\mu = 6$. Four vortex lines of alternating charge.

Stationary Gross-Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + \frac{x^2 + y^2 + z^2}{2}\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Solutions for $\mu = 6$. A vortex ring with two "handles".

Stationary Gross-Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + \frac{x^2 + y^2 + z^2}{2}\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Solutions for $\mu = 6$. Two bent vortex rings?

Stationary Gross-Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + \frac{x^2 + y^2 + z^2}{2}\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Solutions for $\mu = 6$. Two vortex rings and five lines?

Stationary Gross-Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + \frac{x^2 + y^2 + z^2}{2}\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Solutions for $\mu = 6$. A vortex ring cage?

Multiple solutions are ubiquitous and important in physics.

Conclusions

- Multiple solutions are ubiquitous and important in physics.
- Deflation is a **useful technique** for finding them.

Conclusions

- Multiple solutions are ubiquitous and important in physics.
- Deflation is a useful technique for finding them.
- Deflated problems can be solved efficiently.