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Introduction

Can you conduct an experiment twice . . .

and get two different answers?
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Can you conduct an experiment twice . . .

and get two different answers?

Axial displacement test of an Embraer aircraft stiffener.
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Can you conduct an experiment twice . . .

and get two different answers?

Two different, stable configurations.
P. E. Farrell (Oxford) Deflation September 30, 2020 3 / 14



Introduction

Why worry?

F

F

A PDE with two unknown solutions
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Why worry?

F
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Start from some initial guess
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Why worry?
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We converge to one solution, our prediction
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Why worry?
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But nature has chosen another (unknown) solution!
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Introduction

Mathematical formulation

Compute the multiple solutions u of an equation

f(u, λ) = 0

f : V × R→ V ∗

as a function of a parameter λ.
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Introduction

Mathematical formulation

Compute the multiple solutions u of an equation

f(u, λ) = 0

f : V × R→ V ∗

as a function of a parameter λ.

What is f?

f could represent stationary states, periodic orbits, bifurcation points in
another parameter, . . .

Applications

Navier–Stokes, hyperelasticity, topology optimisation, liquid crystals,
Bose–Einstein condensates, . . .
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Deflation

The core idea

Deflation

Fix parameter λ. Given

I a Fréchet differentiable residual F : V → V ∗

I a solution r ∈ V , F(r) = 0, F ′(r) nonsingular

construct a new nonlinear problem G : V → V ∗ such that:

I (Preservation of solutions) F(r̃) = 0 ⇐⇒ G(r̃) = 0 ∀ r̃ 6= r;

I (Deflation property) Newton’s method applied to G will never converge
to r again, starting from any initial guess.

Find more solutions, starting from the same initial guess.
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Deflation

Finding many solutions from the same guess

F

F

F

Starting setup
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Deflation

Finding many solutions from the same guess
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Step I: Newton from initial guess
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Finding many solutions from the same guess
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Step II: deflate solution found
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Finding many solutions from the same guess
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Step III: termination on nonconvergence
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Finding many solutions from the same guess
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Step III: termination on nonconvergence
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Deflation

Construction of deflated problems

A nonlinear transformation

G(u) =M(u; r)F(u)
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Construction of deflated problems

A nonlinear transformation

G(u) =M(u; r)F(u)

A deflation operator

We say M(u; r) is a deflation operator if for any sequence u→ r

lim inf
u→r

‖G(u)‖V ∗ = lim inf
u→r

‖M(u; r)F(u)‖V ∗ > 0
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Deflation

Construction of deflated problems

A nonlinear transformation

G(u) =M(u; r)F(u)

A deflation operator

We say M(u; r) is a deflation operator if for any sequence u→ r

lim inf
u→r

‖G(u)‖V ∗ = lim inf
u→r

‖M(u; r)F(u)‖V ∗ > 0

Theorem (F., Birkisson, Funke, 2014)

This is a deflation operator for p ≥ 1:

M(u; r) =

(
1

‖u− r‖p
+ 1

)
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Deflated continuation

λ

u

Starting solution
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Deflated continuation
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u

Step I: continuation

P. E. Farrell (Oxford) Deflation September 30, 2020 10 / 14



Deflation

Deflated continuation
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Step II: continuation
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Deflated continuation

λ

u

Step III: deflate
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Deflated continuation

λ

u

Step III+: solve deflated problem
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Deflated continuation
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Step III: deflate
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Deflated continuation

λ

u

Step III+: solve deflated problem
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Deflation

Deflated continuation

λ

u

Step IV: continuation on branches
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Deflation

Deflated continuation

λ

u

A disconnected diagram.
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Deflation

An example: the winged cusp

The winged cusp for x ∈ R

f(x, λ) = x3 − 2λx+ λ2 − 2λ+ 1 = 0
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Applications Nonlinear PDEs

Application: Bose–Einstein condensates

Stationary Gross–Pitaevskii equation

−1

2
∆φ+

x2 + y2 + z2

2
φ− µφ+ |φ|2φ = 0, φ|∂Ω = 0.
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Applications Nonlinear PDEs

Application: Bose–Einstein condensates

Stationary Gross–Pitaevskii equation

−1

2
∆φ+

x2 + y2 + z2

2
φ− µφ+ |φ|2φ = 0, φ|∂Ω = 0.

Solutions for µ = 6. A vortex line and a planar dark soliton.
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Application: Bose–Einstein condensates

Stationary Gross–Pitaevskii equation

−1

2
∆φ+

x2 + y2 + z2

2
φ− µφ+ |φ|2φ = 0, φ|∂Ω = 0.

Solutions for µ = 6. A pair of vortex lines.
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Applications Nonlinear PDEs

Application: Bose–Einstein condensates

Stationary Gross–Pitaevskii equation

−1

2
∆φ+

x2 + y2 + z2

2
φ− µφ+ |φ|2φ = 0, φ|∂Ω = 0.

Solutions for µ = 6. A vortex star.
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Applications Nonlinear PDEs

Application: Bose–Einstein condensates

Stationary Gross–Pitaevskii equation

−1

2
∆φ+

x2 + y2 + z2

2
φ− µφ+ |φ|2φ = 0, φ|∂Ω = 0.

Solutions for µ = 6. Four vortex lines of alternating charge.
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Applications Nonlinear PDEs

Application: Bose–Einstein condensates

Stationary Gross–Pitaevskii equation

−1

2
∆φ+

x2 + y2 + z2

2
φ− µφ+ |φ|2φ = 0, φ|∂Ω = 0.

Solutions for µ = 6. A vortex ring with two “handles”.
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Applications Nonlinear PDEs

Application: Bose–Einstein condensates

Stationary Gross–Pitaevskii equation

−1

2
∆φ+

x2 + y2 + z2

2
φ− µφ+ |φ|2φ = 0, φ|∂Ω = 0.

Solutions for µ = 6. Two bent vortex rings?
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Applications Nonlinear PDEs

Application: Bose–Einstein condensates

Stationary Gross–Pitaevskii equation

−1

2
∆φ+

x2 + y2 + z2

2
φ− µφ+ |φ|2φ = 0, φ|∂Ω = 0.

Solutions for µ = 6. Two vortex rings and five lines?
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Applications Nonlinear PDEs

Application: Bose–Einstein condensates

Stationary Gross–Pitaevskii equation

−1

2
∆φ+

x2 + y2 + z2

2
φ− µφ+ |φ|2φ = 0, φ|∂Ω = 0.

Solutions for µ = 6. A vortex ring cage?
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Conclusion

Conclusions

I Multiple solutions are ubiquitous and important in physics.

I Deflation is a useful technique for finding them.

I Deflated problems can be solved efficiently.
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